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ABSTRACT

The present study concerns a theoretical investigation of stability

and an experimental investigation of transition for wall boundary layers

developed within unsteady plane expansion waves and behind shock waves

travelling into a gas at rest'

The theoretical investigation involved three tasks: the use of

approximate methods for the prediction of critical Reynolds numbers, a

numerical integration of the Orr-Sommerfeld equation for the incompres-

sible boundary layer flow at the expansion wave head, and the develop-

ment of a multiple scales technique for nearly quasi-steady, quasi-

parallel boundary layer flows. The boundary layer flow at the expansion

wave head has the same velocity profile as a semi-infinite flat plate

given a sudden constant acceleration after being at rest. For this

flow a minimum critical Reynolds number Re, = 25,488 is calculated.
cr

In the experimental study, thin-film surface thermometers, flush

hot-film anemometers and hot wire anemometers were used independently

and simultaneously to detect boundary layer transition. Expansion wave

boundary layer transition times observed after the time of wave head

arrival, are five to eight times larger than those previously reported

and most of the transition Reynolds numbers observed are above or near

the critical Reynolds numbers calculated by the approximate method.

Shock wave boundary layer transition times observed are also larger

than those previously reported and some of the transition Reynolds

numbers observed based on distance to the shock wave front are above

the critical values previously calculated. Most of the shock wave

boundary layer transition times observed can be correlated with a

6particle path Reynolds number Re x (4.0 ± 1) x 10
Xp
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NOMENCLATURE

A defined by Eq. 3.29

Ao  defined by Eq. 3.33
Rf

a overheat ratio, a = -- 1)
0

ae  speed of sound at inviscid flow temperature

a speed of sound at T = TO

B1 ,B 2 ,.. .,B 8  defined by Eq. 3.31

c = c'/u dimensionless complex disturbance speed of propagation
e

c= W/k complex disturbance phase velocity

C, C gas specific heats, assumed constantp v

e defined by Eq. 2.4

Ef film voltage

F function defined by Eq. 2.14

fl, f 2 functions defined by Eq. 3.33

FHFA Flush Hot-Film Anemometer

G function defined by Eq. 2.15

g1  g2  functions defined by Eq. 3.33

H shape factor = 6*10

hl,h 2,h3 ,h4  functions defined by Eq. 3.39

HWA Hot-Wire Anemometer

1112,13,14 integrals defined by Eq. 3.41

k f k' 6R dimensionless complex disturbance wave

number, k = kr + ik.; or coefficient of thermal

conductivity.

k' complex disturbance wave number, k' u kr' + iki

L effective hot-film length
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L* actual hot-film length
u

SNs  shock wave Mach number = a-
0

p gas pressure

q local surface heat transfer rate

Rf electrical resistance of film

R electrical resistance of hot-wire

R electrical resistance of wires or films at

room temperature (= 700F)

Re Reynolds number uR6R/VR

Re Reynolds number based on length t

s dimensionless similarity variable, defined by Eq. 2.6

sd dimensionless similarity variable, defined by Table IVId
dimensionless similarity variable, defined by Eq. 2.1

T gas temperature

t time, measured from expansion wave origin; dimensionless

in Sec. 3

t 1 dimensionless slow time variable for multiple scales

analysis, = et

u mean value of velocity along x, parallel to wall

U= u dimensionless component of mean velocity along x,
uR

parallel to wall

u2  inviscid gas velocity along x behind shock wave (tube

fixed coordinates)

uR representative reference value of u, usually uR = ue

u s  velocity of shock wave

ul disturbance velocity along x, parallel to wall

v t  disturbance velocity along y, perpendicular to wall

* -*., [ [ zzz
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v mean component of velocity along y, perpendicular

to wall

Vg dimensionless group velocity defined by Eq. 3.26

V v dimensionless component of mean velocity along y,
uR

perpendicular to wall

X distance coordinate parallel to wall, measured from

the expansion wave origin; dimensionless in Sec. 3 with

arbitrary origin.

X distance from shock wave front
sw

X p particle path length

X s  distance from diaphragm location

X1  dimensionless slow distance scale used in multiple

scales analysis, = ex
y normal distance from the wall; dimensionless in Sec. 3

Greek Symbols

a t  coefficient of thermal resistivity

2

y = C p/C constant

6 boundary layer thickness, defined by u/u = .99

6 R  representative reference value o! length for y direction

6* local boundary layer displacement thickness

= (l'.ue)dy

C (y-l)/(Y+l)

C l/Re = vR/uR6R

Tsimilarity variable, Eq. 2.14

viscosity coefficient of the gas

9 1 _____"
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wave length of disturbance

v kinematic viscosity = p/p

p gas density

a gas Prandtl number C p/k

defined by Eq. 3.29

solution to Eq. 3.30

Ttime since wavehead arrival at observation station

local shear stress at the wall
w

non-dimensional skin friction, Eq. B-13

* amplitude of disturbance stream function of Eq. 3.3

solution vectors: i =

#2 = (f2'f2' '2"112 ' I)

*1,*2 solutions satisfying Eq. 3.4

e local boundary layer momentum thickness = ( 1 - - 0 e dy;

0 ee e
or as defined in Sec. 3.3

e0  defined by Eq. 3.21

01 defined by Eq. 3.34

disturbance stream function
S UR dimensionless complex disturbance frequency, w w r w

uR

complex disturbance frequency, w' = r' + i'

Subscripts

cr denotes critical value

e denotes inviscid flow property

f denotes film property

H denotes wave head

i denotes imaginary part of a complex quantity
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0 denotes initial conditions, ahead of wave

p denotes particle path

r denotes real part of a complex quantity

R denotes reference quantity

TR denotes transition

w denotes wall condition

I
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1.0 INTRODUCTION

In the last few decades, there have been many investigations concern-

ing laminar to turbulent transition of boundary layer flows. Most of these

investigations have concerned steady flows, wherein the mean or base flow

field is independent of time. The problems of lamina, boundary layer

stability and transition in unsteady flows, where the mean flow does vary

with time, have by comparison received much less attention. The present

study concerns both the stability and the transition characteristics of

such time varying laminar boundary layers, with emphasis on a time

variation of the mean flow which is non-periodic. In this study, a linear

stability analysis is formulated, and particular application is made to

the experimental situation of the unsteady, two-dimensional wall boundary

layer formed by a plane unsteady expansion wave travelling into a gas at

rest. As part of the study, experiments with such expansion waves were

conducted to determine the time or position of transition of the initially

laminar boundary layer over a range of pertinent conditions. The same

experimental apparatus was also used to obtain transi:ion time data behind

plane shock waves for comparison with results of earlier investigators.

Regarding the motivation for the present study, the phenomena of

stability and transition of unsteady boundary layersare of interest in the

context of basic fluid dynamics research and also as regards various

engineering applications. Applications of interest include the wall boundary

layer behavior in various gas-dynamic devices such as shock tubes, expan-

sion tubes, and combustion tubes, all of which utiliz.3 transient wave-

induced flows, as well as unsteady boundary layer behavior in external

flows over oodies. External flow applications include that of a body in

j _. 1
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flight moving with a time dependent velocity. In this connection it may

be noted that the expansion-wave wall boundary layer of interest in the

present study is initially identical (close to the wavehead) to the

unsteady laminar boundary layer formed on a semi-infinite flat plate under-

going a constant acceleration from rest.

The expansion wave flow was generated experimentally by the rapid

rupture of a mylar diaphragm which sealed a pressurized tube of rectangular

cross-section. An expansion wave (Fig.la) travels ito the tube accelerat-

ing the gas from rest (before the wavehead) in a direction opposite to

the wave travel. A final constant state is reac~ied following the wave

tail. The expansion wavehead travels at the local speed of sound of the

rest gas and the wave widens with distance or time from the origin. The

wall boundary layer thus develops under the influence of a strong acceler-

ating pressure gradient which is time dependent, the gradients decreasing

with time. As the inviscid gas accelerates, it expands isentropically so

that pressure, density and temperature decrease monotonically with time.

The inviscid gas is cooled below the wall temperature (which decreases

only slightly with time) so that there is some heat transfer from the wall

to the boundary layer gas.

The boundary layer induced on a plane wall behind a plane shock wave

travelling at constant speed into a gas at rest is a steady flow phenomenon

in a reference frame attached to the wave. Transition time data for the

shock wave boundary layer in air have been obtained by a number of inves-

tigators [eg, 1,3,4,6]. Usually the time of transition at a fixed location

was detected using thin-film resistance thermometers rounted flush on the

surface and operated "cold" at minimal current levels to measure local

surface temperature change with time. The time of transition after the

arrival of the wave at a given station is typically indicated by a
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pronounced increase in the slope of the surface tempterature-time record.

The data of most experiments except Thompson's [4] agree quite well when

correlated in terms of a transition Reynolds number based on the distance

of transition from the wave front. Thompson observed transition times on

glass inserts which were two to five times larger than times observed by

most other investigators, and his experiments were limited by the arrival

of disturbances from the junction of the glass insert and metal wall.

An important feature to be noted is that the transition Reynolds numbers

deduced from most of the shock wave boundary layer experiments fall far

below the cri-ical stability Reynolds numbers predicted by a linear

stability analysis done by Ostrach and Thornton [7]. The linear

stability theory of Ref. 7 is based on the model of two-dimensional

Tollmien-Schlichting disturbances arising in the compressible (steady)

laminar boundary layer developed behind a plane shock, the boundary layer

flow itself being assumed quasi-parallel for stability considerations. The

shock wave experimental data therefore suggest that other factors or

mechanisms were present in the experiments which dominated the occurrence

of transition.

In contrast to the shock wave flow, the inviscid flow within an

expansion wave is inherently unsteady in any frame of reference. The wall

boundary layer transition within the expansion wave has apparently not

received any previous attention except by Chabai [1] and Mack [40]. Using

thin-film surface thermometers, Chabai [1] conducted careful transition time

experiments for both shock-wave and expansion-wave boiindary layers in

nitrogen. The experiments used glass plate inserts in the wall of a

duralumin tube of 3/8-inch by 4-inch rectangular inte:nal cross-section.

For the expansion wave flows, the initial tube pressure of nitrogen was

_________________________
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varied from .7 to 12 atmospheres and data was obtaind at distances from

3 to 16 feet from the diaphragm station. Chabai found that transition

times increased as the initial pressure level decreased and as the dis-

tance from the diaphragm location increased. However, he was not able to

correlate the data with any form of Reynolds number, unlike the transition

time data for the shock-wave boundary layer. Chabai also concluded that

transition of the expansion-wave boundary layer was not significantly

affected by glass-metal junctions or other small surface irregularities

or steps, unlike the shock-wave boundary layer which was demonstrated to

be very sensitive in that respect. Chabai's conclusion is at variance

with the results of the present experiments which indicate transition of

the expansion-wave boundary layer to be very sensitive to small roughness

elements or joints in the tube walls. Generally, the transition times

measured in the present study are very much greater than those reported

by Chabai. The transition data obtained by Mack [40] using optical

methods for the expansion wave at an initial pressure level of 1000 mm

Hg correlate well in terms of a particle path-length Reynolds number of

2.5 x 106 at transition. However, data for other pressures could not be

correlated by this particular Reynolds number.

There are various flow parameters other than Reynolds number which

affect boundary layer transition; for example, both heat transfer and

pressure gradients influence transition. Various other factors may also

have significant effect on transition but cannot always be detected or

completely eliminated, such as wall vibration, free stream disturbances,

and wall roughness. For new flow situations particulcrly, experiments

are usually necessary if the occurrence of transition is to be established

with any certainty. Several comprehensive reviews of transition research

| ........
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bring out the great complexities of transition phenomena and emphasize

the lack of fundamental understanding and the difficilty of conducting

truly meaningful experiments [33,34,48].

Dryden [20] utilized the transition data of several investigators

and showed that a free stream turbulence level greater than .1% had a

significant effect on transition of a flat-plate boundary layer. For

disturbances which are sufficiently large (--> .2), Elder [45] observed
e

breakdown to turbulence to begin for Reynolds numbers below critical

values predicted from linear stability analysis of self-excited

disturbances.

The influence of wall roughness or protrusions on transition is de-

pendent of h/6 and the Reynolds number Reh = u0 , where h is the height

of the protrusion and uh is the velocity at that distance from the wall.

Squire [58] utilized linear stability theory for inco;pressible flow to

demonstrate that two-dimensional disturbances such as might be produced

by a wire placed at the wall and normal to the direction of the flow,

are more effective in bringing about boundary layer instability than

three-dimensioral disturbances such as those produced by distributed

roughness elements. For the two-dimensional roughnes3 element consisting

of a wire placed on the surface and perpendicular to the flow, Swigart [46]

observed that transition was influenced when Reh exceeded 50 to 150, whereas

for distributed three-dimensional elements, the corresponding Reh value

exceeded 250 to 300. The ratio of the wire height to the boundary layer

thickness 6 is also important. Dryden [47] has shown that for h/6 > .15,

the effect on transition is significant. For the expansion wave flow the

initial boundary layer thickness is zero at the time of wave head arrival.

Protrusions can trip the boundary layer for some initial period even though
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the Reynolds number is substantially below the critical Reynolds number

determined from linear stability theory. If the Reynolds number remains

below the critical Reynolds number and the boundary layer becomes

sufficiently thick compared to the protrusion height then the tripped

boundary layer could re-laminarize. The region of flaw temporarily made

turbulent in this manner is referred to herein as a "turbulent slug".

This effect was observed in initial experiments cf the present study but

was not observed after small steps or protrusions were eliminated.

The effect of pressure gradient on stability and transition can be

quite substantial. The critical stability Reynolds numbers for Falkner-

Skan velocity profiles have been derived by Tetervin And Levine [44] from

an approximate prediction method of Lin (12]. The results agree well with

actual solutions to the Orr-Sommerfeld stability equation obtained by

others (27,13,14,16]. In the presence of a favorable pressure gradient, the

flow is accelerated and the critical Reynolds number thereby increases and

instability is delayed. For an unfavorable pressure radient, the velocity

profile has a point of inflection and the opposite is true. For a

sufficiently large favorable pressure gradient, a turtulent boundary layer

or a boundary layer that has been tripped may become laminar again [17,18].

Lin's approximate method has been extended by Lees [36] to predict the

stability of compressible boundary-layer flows and has been used by

Tetervin [37] to predict the point of instability for Falkner-Skan profiles

with heating at the walls. Lees' method was also used by Ostrach and

Thornton [7] for the stability of the shock-wave wall boundary-layer,

and the results agree well with the exact solution to the Orr-Sommerfeld

stability equation for the flow induced by a very weak shock wave.

In the present study, the stability of the expansion-wave boundary

layer, which has not hitherto been investigated, has been examined from
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several points of view. The traditional approach in treating the stability

of unsteady boundary layers has been to assume both a quasi-parallel and

a quasi-steady model. That is, the base flow to be perturbed is assumed

spatially parallel, thereby neglecting the influence of the change of

boundary-layer thickness with streamwise distance, and steady-flow stability

theory is then assumed to apply at any instant in time in terms of the actual

instantaneous velocity profiles of boundary layer. Intuitively, the quasi-

steady assumption might be expected to be more or less valid if the time

characterizing change of the mean flow is sufficiently large compared to

the time characterizing the disturbance field. In an early paper Shen [22]

obtained a somewhat more quantitative criterion for a quasi-steady model

to be reasonably valid. This criterion is that the characteristic time

of the base flow be much larger than Re6
1/3 times the characteristic time

of the disturbance. Here Re6 is the Reynolds number based on the inviscid

free-stream velocity relative to the wall and the local boundary-layer

thickness 6. Shen also pointed out that quasi-steady solutions could only

indicate whether the boundary-layer flow in question was momentarily

stable or not. The present study is mainly concernec with non-

periodic unsteadiness of the mean flow. The analysis of the stability

of unsteady periodic flows has received considereble attention in

recent years, particularly by Davis [38] and his colleagues.

Over a fairly wide range of conditions, the expansion-wave boundary

layer is found to satisfy reasonably well Shen's criterion for near quasi-

steady stability. A quasi-steady, quasi-parallel model was therefore

investigated first in the present stability study, with two approaches

being followed in this respect. The first approach uses the approximate



8

method of Lees [36] to obtain the critical stability Reynolds numbers for

the fully compressible expansion-wave boundary layer with heat-transfer

effects included. The second approach has been to solve numerically the

quasi-steady Orr-Sommerfeld equation and obtain the quasi-steady neutral

stability curve for the near incompressible flow region close to the

expansion wavehead.

Beyond the limiting results for a quasi-steady model, a logical next

step or improvement for near quasi-steady boundary layers may be under-

taken by a singular perturbation analysis using the method of multiple

scales. In this approach, a slow time variable is in.roduced to charac-

terize the mean flow time dependence. This is similar in spirit to Saric

and Nayfeh's multiple scales analysis of spatial non-parallel effects

in steady boundary layer flows [28]. Such an analysis is developed in

Sec. 3 consideiing spatial non-parallel effects as well as a mean flow

time dependence. The analysis is developed in a gene-al form and is

applicable to any unsteady boundary layer which is near quasi-steady.

In the present experimental study, a hot-wire anemometer in the

boundary layer, a hot-film surface anemometer, and a "cold" thin-film

surface resistance thermometer were all utilized to detect the occurrence

of transition on the sidewalls of a specially constructed 4-foot long

test section. The transition times observed for the expansion-wave

boundary layer were some five to eight times larger than the times

reported by Chabai [1] for corresponding conditions of initial pressure

level, tube station, etc. The corresponding transition Reynolds numbers

lie close to the calculated critical stability Reynolds numbers, and

exceed the later values for some conditions.

The differences between the present data and those of Chabai for
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the expansion wave boundary layer are at least partly attributed to

the significant effects found on transition of very small wall roughness

elements or surface junction steps, which were eventually eliminated in the

final test section used. The presence of such effects was first revealed

in the present studies by surface hot-film anemometer records. Analysis

of the surface hot-film indicated it responded essentially to the local

quasi-steady skin friction which, at the high Reynolds numbers concerned,

undergoes an extremely rapid and large step-like increase on transition.

In contrast, the surface temperature recorded by the ,-old thin-film

resistance thermometer shows only a moderate change cf slope on trans-

ition, and roughness effects can thereby be effectively masked.

In the present shock-wave boundary layer studies, transition Reynolds

numbers based on distance behind the shock were observed to be several

orders of magnitude higher than those reported by most previous investi-

gators [1,3] but agree fairly well with or exceed the data of Thompson [4].

For some conditions, the present experimental Reynolds numbers at

transition do in fact exceed the critical stability Reynolds numbers

calculated by Ostrach and Thornton [7].

In the following sections, the mean flow properties of the expansion-

wave boundary layer are first discussed in Sec. 2. The stability analyses

are taken up in Sec. 3. The experimental program and apparatus for the

transition studies are described in Sec. 4, and the experimental

transition results are discussed in Sec. 5.
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2.0 THE MEAN FLOW PROPERTIES OF THE EXPANSION WAVE LAMINAR BOUNDARY LAYER

2.1 Definition of Inviscid Expansion-wave Flow and Coordinate System

The inviscid flow outside of the boundary layer is assumed to be

that generated by a plane isentropic expansion or corpression wave. The

Reynolds number is very large so that the boundary layer is extremely

thin compared to the expansion or shock tube width. Boundary layer dis-

placement thickness effects can thus be neglected. For the coordinate

system of Fig. lb, the basic equations governing mass and momentum balance

for unsteady, inviscid, one-dimensional and compress:'ble flow can be

written as follows:

a- + P a-u + u ap-= 0

au au 1 p

The gas is assumed to be thermally perfect with constant specific heats

Cp and Cv, so that the specific heat ratio y is constint. For centered

expansion waves, the family of characteristics I! as defined below have

a unique origin in the x-t plane, Fig. la. The expansion wave under study is

actually non-centered as shown in Fig. lb especially at stations close

to the diaphragm. The non-centered wave effects on the wall boundary-

layer have been investigated by Hall et al [81 and Srinivasan [5]. The

two families of mathematical characteristics governing the flow are as

follows [9]:

dxAlong I: =ue + ae and u + a P constant

Along II: U ae and Iu e  a Q constant

dI ______ e__ __e
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The gas is initially at rest and at a uniform state so that the

relation

S ue +ae ao constant

applies locally throughout the flow, and the family o~f characteristics II

are straight lines of slope
u

dx e
dt ue -ae = -- a0

along which the flow properties are constant.

Because of the simple wave nature of the flow, any inviscid flow

property Q satisfies the equation:

at 8 a~x

For the velocity ue this gives

au ue (2.1)

at' L5  - 8 0) a 0

when transformed in terms of the similarity variable so  (x + a0t)/aot

and t' = t. The magnitude of the similarity variable so, for a centered

wave, is the ratio of the distance along x of an> point x,t from the wave-

head to the corresponding distance of the wavehead from the wave origin

(Fig. la). so is positive for expansion waves, negative for compression

waves, and becomes zero at the wavehead.

For a centered wave ue depends only on so p and fom Eq. (2.1) the

centered wave solution is thus ue = faos which makes aue/8t' vanish

identically throughout the flow field. For a non-centered wave u

$ depends on t' as well as on s and au /3t' is generally not zero. At the
0 e

wavehead, however, Eq. (2.1) indicates that au./at' must still vanish for

a non-centered wave because both so and ue become zero at that point. This
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implies that to first order derivatives any non-centered simple wave of the

type considered here (i.e., non-vanishing first derivative at the wavehead)

behaves at the wavehead as a centered wave. More formally, this may be

shown by representing ue as a power series expansion in so with coefficients

dependent on t' determined via Eq. (2.1), which gives for the class of

waves considered

b22t b53 22/at2S 3
2 e  oaos0 + b b + + ... (2.2)

where the b's are arbitrary constants, Eqs. (2,1) and (2,2) also indicate

that the non-centered wave tends asymptotically to haje centered wave

behavior as time t' increases, which is also evident on physical grounds

that e becomes small compared to x. The first derivatives with respect

to x and t of the inviscid flow properties at the wavehead are then found

to be given by centered wave relations, in particular

( e e 2
t-o) fa/t H =-Oao/x (2.3a)

H H0 H

or in terms of pressure P e-

ap e apee = ao( - 'H -efPo/tH = yBpoao/XH  (2.3b)

H H 01

The slope of tI'e pressure-time record measured at the instant of wavehead

arrival can thus be used to determine the origin of the x-t coordinate

system of Fig. lb.

In Fig. lb, the distance e is the particular value of x at which the

family II characteristic through any point x,t intersects the x-axis. e

may also b3 regarded as the x displacement of the fluid particle at (x,t)

from its position in the corresponding centered wave flow. It follows

that for any such point (x,t) the relation

x - e dx Ue
f (ft)I= W- ao (2.4)
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applies, from which ue can be expressed in the form

Ue = Baos (2.5)

where

e
s = (x + aot - e)/aot = o - (2.6)

0

Here s is to be considered a new independent variable with e depending on

x and t, which gives a local inviscid flow similarity for the non-centered

waves analogous to so for centered waves. At the wavehead s = 0 as x = -aot

and e = 0 at that point. In terms of s, the relations for the other depen-

dent variables of the inviscid (isentropic) flow may _e summarized as

follows:

Pe =/Ya Pe C/O T 1/2 ae

is (2.7)POP 0 a 0

For a non-centered expansion wave e can be determined from the time-

pressure record by comparison of the value of s derived from Eq. (2.7)

and s derived for a centered expansion wave. The difference is
0

significant for locations close to the wavehead origia where e may be

within an order of magnitude of x.

2.2 Solution to the Boundary Layer Equations for Expansion Wave Flow

The expansion-wave boundary layer velocity and temperature profiles

obtained from previous studies are used in the stability analyses of Sec.

3. The following is a discussion of how those solutions are obtained.

The expansion wave boundary layer first received attention by Mirels

[2] who considered the laminar and turbulent boundary layer behind a

concentrated expansion wave of zero thickness. The laminar boundary layer

formed within unsteady centered expansion waves was first studied by

I__4
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Cohen [10] and Trimpi and Cohen [11]. Hall [57] extended the analysis of

Cohen [10] to include the compression wave case, the effect of the wall

temperature change due to the finite wall thermal conductivity and the

displacement effect of the boundary layer on the inviscid flow. Hall

et al. [8] also investigated the boundary layer developed within a non-

centered wave.

For the purpose of stability analysis in the present study, the

expansion wavc is assumed to be a centered wave. The inviscid flow

quantities Ue, Pe' Te Pe are then given by Eq. (2.7). The laminar

boundary layer displacement thickness is typically less than one percent

of the expansion tube width so that it does not affect the inviscid flow

quantities.

The unsteady laminar boundary layer is governed by the usual two-

dimensional boundary layer approximations. The equations for conservation

of mass, momentum and energy in an unsteady compressible boundary layer

are then respectively as follows:

ap a(pu) (Pv) =0 (2.8)
at 3x y

u u_ au
a u _ * au Va. + -01 (2.9)

at a y~ a x 3y y)

PaT aT vT R +u p + 2 +-- T + U(u2 (2.10)

In addition, P = pe(xt) throughout the flow. The assumed

perfect gas has the equation p = pRT. Eqs. (2.8)-(2.10) are governed by

the following boundary conditions:

at y = 0: u = 0, v = 0, T = Tw(x,t), P = Pw(xt)

jat y = -: u = Ue(xt), T = Te(xt), p = Pe(xt), p = pe(x,t)

9 - - -
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At the wavehead (x = xH =aotH):

u = O, T = T, 0  P e o

Subscript o denotes conditions prior to the expansion wavehead arrival.

Typically the wall temperature T (xt) decreases only slightly from T0

due to the high heat capacity of the wall compared to air particularly for

the steel wall used in the present study. The actual wall temperature,

T (x,t) may be determined from the simultaneous solution of the heat con-

duction equation governing heat flow in the walls and the gas boundary

layer equations, as first done by Hall [57]. For the purpose of this

study, it is reasonable to neglect the change in T and to assume T =
w w

T = constant.

The boundary layer equations were solved by Cohen [10] assuming

an isothermal wall and a centered expansion wave in terms of similarity

variables n and so . The governing boundary layer eqs.

(2.8)-(2.10) can be transformed in terms of new independent variables

so p n, defined by

so = (x + aot)/aot

(2.11)
rl J/ (P/Po )dY

(Vo st)1 2 Jo
The differential equations can thus be written ip terms of variables

n and so0 instead of the three variables x, y and t. '-he magnitude of

the similarity variable s is the ratio of the distance along x of any

point (x,t) from the wavehead to the corresponding distance of the wavehead

from the wave origin. It is convenient at this point to introduce new

dependent variables F(s0 ,n) and G(so, n) defined by:

-
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F BF
u =U eF Baos 3 (2.12)

T =T + (Te -Tw)G= Tw  AT G (2.13)
e w

where AT =Te -T

aF

as n - ; = G = 1

annat the wall n = 0; -K= G =0

The local coefficient of viscosity p is taken to be proportional to

T so that the product pp is constant across the boundAry layer and is given

in terms of the pressure by:

P= = P °e (2.14)

The terms in Eqs. (2.8)-(2.10) involving the normal velocity component

v are eliminated by use of the continuity relation, Eq. (2.8). The

final transformed equations governing F and G, which give the velocity

and temperature distributions in the gas boundary layer, can be written

as follows,

Pe 3 2
-F + + 1 a sF + Bs F )SF -(F + F)Pnnn 2 2 0)Fsnn- 0So n ) n

o e

-G~ s +22o Os)F~
2 0o

!e sF) +T +s FT )G = 0 (2.15

[(Tw + AT G)s y pe (T 
+ AT G)]

+ T2c T Pe (2.16)

po AT
i;0

i _________._________________ -____ ._____
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In Eqs. (2.15) and (2.16), pe' denotes dpe/ds0 , and the subscripts so*

n, t denote partial derivatives.

Equations (2.15) and (2.16) are coupled nonlinear partial differential

equations which can only be solved numerically. The main flow region of

interest in the present study is that close to the wavehead where values

ofs ° tend to be small compared to unity. For small values ofS we can

assume a coordinate expansion ins 0 of the form

0

F=F 0+F 1s 0+ F2 02+o 1° 0lo  F2So  + ...

(2.17)

G G, + G s0  + G2S 2  +  
...

where the coefficients Fi and Gi depend on n only. This procedure was

used by Cohen [10]. Substitution of Eq. (2.17) into Sqs. (2.15) and

(2.16) yields the sequence of linear equations:

Fi"' + -Fill (i+l)F i' = -1 l G

(2.18)

G." + !- G.' - (i+l)G = (F i Gi)

i = O, 1, 2,.

at n = 0: F = G = 0, F1' = F2' 0

and G1 = G2 = ... = 0

at n = -: F' = G = 1, G1' = = ... =

and G1' = G2  ... 0

where primes denote derivatives with respect to n. F.7 and U7 denote

nonhomogeneous terms which depend only on functions of lower order.

For i 0 0, the nonhomogeneous terms are F°  Go = -1 and the solutions

for Fo' and Go ' are obtained in closed form for any values of y and a as
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Fo  Go  I 1+(ln2/2)erfc(n/2) + n/w 1 / 2 e - n 2 /4 (2.19)

where

erfc(n/2) =e dO
.IF/2

Higher order functions for i = 1, 2, ... , require numerical solutions.

The first three terms of Eq. (2.18) were numerically evaluated by

Cohen [10]. Mirels [2] pointed out that the boundary layer profile on

a semi-infinite flat plate having a constant accelerption after initially

being at rest is the same as the velocity profile given by Eq. (2.19).

A modified Karman-Pohlhausen integral method used by Trimpi and Cohen

[11] to solve the expansion wave boundary layer gives velocity profiles

which agree with those from the finite series expansion [10]. The

velocity profiles obtained by Srinivasan [5] and presented in Fig. 2

agree well with the solutions of Cohen [10] and Trimpi and Cohen [11]

and are used herein for the approximate stability analyses.
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3.0 STABILITY ANALYSES

For incompressible steady flow, Squire [58] showed that the stability

problem for a three-dimensional parallel flow problem can be transformed to

an equivalent two-dimensional problem at a lower Reynolds number. Conrad

and Criminale [231 state that Squire's theorem can be extended to time

dependent incompressible flows. From Squire's theorem, it may be concluded

that for the nearly incompressible subsonic flow developed within expansion

waves, two-dimensional disturbances are more domi-aant in promoting boundary

layer instability than are three-dimensional disturbances. Similar conclu-

sions were reached by Ostrach and Thornton [7] for the boundary layer flows

developed behind weak shock waves (Mach number Ms  1). However, for shock

wave Mach numbers larger than 2.18 the approximate method of Lees and Lin

[36] used to find the critical Reynolds number gave the result that the

boundary layer is infinitely stable to two-dimensional disturbances.

In the absence of external disturbances, we may assume that transition

from laminar to turbulent flow is initiated by instabilities of the laminar

expansion wave boundary layer which take the form of two-dimensional velocity

disturbances known as Tollmien-Schlichting waves. The disturbances are

initially small and do not affect the mean flow. The exponential growth

rate of the disturbances is initially independent of disturbance amplitude.

The growth rate becomes dependent on disturbance amplitudes which are large

enough to affect the mean laminar flow. When the disturbances become

sufficiently large, non-linear effects become important. Soon after the

non-linear region, spots of turbulent flow appear and grow in size as they

move downstream. The spots coalesce resulting in fully turbulent flow.

Important objectives of stability theory are first to find a minimum
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critical Reynolds number below which all disturbances are damped, second

to specify which disturbances will amplify under the given flow conditions,

and third to find the disturbance that has the mcst amplification as an

aid in predicting the location of fully turbulent flow. Smith et al. (56]

have shown good agreement of a prediction of transition based on an ampli-

10
fication factor of e with available airfoil data from low free stream

turbulence tests. Smith's criteria for transition doas not agree with

transition data for some classes of boundary layer flows, and in particular

does not agree with transition data for the expansion wave boundary layer

examined herein.

Analytic solutions for the stability of the Blasius boundary layer

were first obtained in 1929 by Tollmien and Schlichting [25] and were

continuously refined as analytic and numerical method- improved [27].

The existence of Tollmien-Schlichting waves was not ccnfirmed until 1948

by Schubauer and Skramstad [29] using a low turbulence wind tunnel. The

results have since been confirmed by other investigators and recently by

Ross et al. [30]. The stability of the Blasius boundary layer and other

parallel flows is well presented in Ref. 26. For steady boundary layer

flows, Saric and Nayfeh [28] have shown the critical Reynolds number to

be less than that derived from parallel stability theory due to non-parallel

flow effects.

In the inviscid limit (large Reynolds numbers), Lord Rayleigh [31]

in 1880 showed that a necessary condition for the boundary layer to become

unstable is that it has a point of inflection. Furthermore, Fjortoft (32]

has shown that for instability to occur, the absolute value of the vorticity

of the primary flow must have a maximum in the domain of flow.

The point of inflection criteria was used by Tollmien [24] and

. . . . . . . . . . . . . . . . . . . . . .... . . -'A , ..
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Schlichting (25] to show that since the viscosity of air increases with

temperature, that a heating of the boundary layer would induce the

occurrence of an inflection point in the velocity profile and thus make

the velocity profile less stable. The point of inflection criteria can

also be used to showthat an accelerated flow is more stable, while a

de-accelerated flow has a point of inflection and is thus less stable.

3.1 Approximate Stability Analyses and Application to the Quasi-
Steady Expansion Wave Boundary Layer

Prior to attempting a solution to the present stability problem, it

is useful to look into approximate methods for the prediction of the

minimum critical Reynolds number. The use of such methods for predicting

the stability and transition of some steady or quasi-steady, incompressible

flows is well presented in Ref. 21. In this section, the applicability of

the limiting assumptions of quasi-steady and quasi-parallel stability for

the expansion wave boundary layer flows under investigation are demonstrated

and results from Lees approximate method [36] are obtained for the critical

Reynolds number. The disturbance equations describing the more detailed

problem are first introduced to demonstrate the need for the approximations

made and the usefulness of the approximate methods. The detailed problem

is further examined in Sec. 3.2 and Sec. 3.3.

The disturbance field is assumed to be two-dimensional on the basis

of Conrad and Criminale's result [23] that flow unsteadiness does not

alter the conclusions of Squire's theorem [58]. The linearized

differential equation describing the disturbances for accelerating

unsteady and incompressible flow is obtained by the substitution of the

disturbed stream function j(x,y,t) = j(x,y,t) + *(x,y,',) in the vorticity

transport equation. The disturbance *(x,y,t) is assumed to be much
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smaller than the mean value of the stream function J(x,y,t). By retaining

only linear terms and subtracting out the mean vorticity transport equa-

tion, the disturbance equation is then as follows:

(V2 -t y(V 2 2y 2 x(V2)y

-(V 2 )y*x 1V4.
y Re~

Subscripts x, ,, and t denote derivatives with respect to those quantities.

All quantities have been non-dimensionalized by means of a representative

reference mean velocity uR along x, measured with respect to the walls and

a representative reference length 6R of the flow for the y direction. The

Reynolds number is Re = uR6R/VR, where vR is a representative kinematic

viscosity IIR/p R , V
2 = a2/ax2 + 2/ay 2 , and V4 = 4/ax4 + 2( 4/x2ay 2) +

4 4a /ay . The fluctuating velocity components u' and v' can be obtained

from the definition of the stream function and are given as follows:

=u , - - (3.2)ay a

For steady flow, assume * takes the customary forn

*(x,y,t) = *(y)ei(kx -wt) (3.3)

where k = kr + iki and w = wr + iwi are complex quantities. kr and wr

are the wave number and frequency of the disturbance respectively, ki and

Wi are the space and time amplification rates, either ,)f which can be set

equal to zero depending on the framework in which the problem is to be
27r

analyzed. The wave length A is given by the expression kr = r-. Equation

(3.1) then takes the well known Orr-Sommerfeld form (Ref. 59):

- k2 )(U-c) - U", 1 [-1 fil" - 2k 2 '' + k4 ] (3.4).1 ~Me
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Here U = U(y) is the distribution of mean velocity parallel to the plane

surface. Primes denote derivatives with respect to y. The phase velocity

c = w/k = cr + ici is a complex quantity. cr is the velocity of propaga-

tion of the disturbance phase in the x direction and ci is related to the

degree of damping or amplification.

For time-dependent flows, an estimated predictiona of stability from

Eq. (3.4) cannot be made solely on whether the d4sturbances grow or decay

but might be made in terms of whether the ratio of the disturbance energy

to the mean flow energy decreases or increases. Shen [221 thus introduced

the concept of a growth factor given as follows:

Gro = 13 E (3.5)

where )
hE - f J06 (u'2 + v'2)dxdy

0 ( 3.6)
X O U2 dy

X is the wave length of the disturbance and 6 is the local boundary layer

thickness. Other criteria for the stability of time dependent flows, in-

cluding whether or not the energy of the disturbances (' J (u'2 + v,2)dxdy)
0 0

grows in time, were investigated by Conrad and Criminale [23]. These

criteria were applied to oscillating and accelerating Couette and Poiseuille

flows with the result that Shen's method produced the most reliable results.

To use Shen's criteria, calculation of the eigenvalues k and c as well as

the eigenfunctions +(y) of the Orr-Sommerfeld equation (Eq. 3.4) are

required.

For a boundary layer type flow of the form U -T(t/t )U(y), where to

is a characteristic mean flow time, Shen demonstrated that:
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Gro < 0 if kc. < TI 1 (3.7)
T -o

where

TI= T/3(t/t0 ) (3.8)

For Gro > 0, the boundary layer is momentarily unstable while for Gro <

0, it is stable.

For unsteady boundary layers, Shen [22] showed that in order for a

quasi-steady approach to be valid, the characteristic time of the base

1/3flow must be much larger than Re times the characteristic disturbance

time. The quasi-steady assumption implies that the boundary layer profile

and thickness change sufficiently slowly so as not to alter the disturbances

which thus must have a much shorter characteristic time. This is

somewhat analogous to the quasi-parallel assumptions used in the stability

analysis of Falkner-Skan type flows and flows around submerged bodies.

The characteristic time of the mean flow tf may be represented as tf =
au

Ue/I'- -and that of the disturbances, tD, may be roughly approximated as

tD = 6R/Ue. The ratio tf/tD is thus equal to ue 2/(6R ue /at). This must

be much larger than Re /3 to satisfy Shen's criteria, where Re is based on

uR = u . For the expansion wave boundary layer,

u Oaos and 6 4 vt (3.9)ue  00

so that
ao2t

tlA = (3.10)
fD 4V'vost (1-cs)

For s < 1, s << 1 so that this becomes
Oa 0asS3/2

tf/tD = 4 V (3.11)
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and

Re1 / 3 = (4fa) 1/3 1/6 1/2 (3.12)

The largest time derivatives occur at stations x closest to the

diaphragm location (2 feet) and at the wavehead. Under these conditions,

and at a typical initial pressure level of five atmospheres, it can be

shown that tf/tD >> Re1 3 for s >> .017. Since the observed expansion-

wave boundary-layer transitions occur at s > .4, the criteria for a quasi-

steady, quasi-parallel stability analysis would seem 4o be reasonably

well satisfied. This leads to some degree of confidence in the use of

steady-flow approximate methods for stability prediction.

Lin [12] derived an approximate method for estimating the critical

Reynolds number for the incompressible boundary layer. Lin's method was

used by Tetervin and Levine [44] to predict the point of instability for

the boundary layers developed under the influence of a pressure gradient

and with blowing or suction. The results are well correlated with a

shape factor H = 6*/0 (6* is the displacement thickness and 0 the momentum

thickness) and agree well with solutions to the Orr-Somnerfeld equation

for critical Reynolds numbers by others [27,13-16]. The displacement

thickness and momentum thickness for a compressible boundary layer can

be defined as follows:

6= PUee y, e (1 - uePe dy  (3.13)

The ratio H = S*le derived for the expansion wave boundary layer is

a function of s only as shown in Fig. 3. The Reynolds number based on e

is zero at the wavehead and increases rapidly as s and H also increase;

the boundary layer thus becomes less stable. For incompressible flow,
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it is expected that the increasing Ree and H will intersect the curve

derived by Tetervin and Levine at some point Hcr and Re which will
cr

indicate the point of instability. Figure 4 illustrates this process

along the particle path of particles observed to undergo transition at

8.16 feet from the diaphragm location. For values of s in excess of .4,

H is larger than the value for an incompressible Blasius boundary layer

even though the pressure gradient is still quite favorable.

Lees [36] obtained a similar formula to that of Lin for the compres-

sible boundary layer given by:
Tc 1.76

____ e
Rep 25( - ) (3.14)

cr c Vl-Mez(1-c) '

and

k cr=u' c (3.15)

where u' is the dimensionless velocity gradient at the wall, c is thew

dimensionless wave speed, Me is the Mach number of the inviscid flow and

Tc is the temperature at the point in the boundary layer where u = c (i.e.,

at the critical point). The critical point is found by searching for the

location in the boundary layer where the following expression is satisfied:

u wc (T/Te)2 d u'
.[ _T)] =0 (3.16)(w) u U=c

e

Lees approximate method has been used by many for preeicting the stability

of steady compressible flows; Tetervin [37] has used this method for pre-

dicting the stability of Falkner-Skan type flows with heating. Ostrach

et al. [71 have also used Lees' method to predict the stability of flows

behind moving shock waves of different strength and shows the significant

effect of wall cooling. Ostrach found very good agreement between the

! • " ' _________"_
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prediction and the value of Re6, obtained from the solution to thecr

Orr-Sommerfeld equation for very weak shocks.

For the expansion wave boundary layer, Srinivasan's [5] velocity and

temperature profiles were used in conjunction with Eq. (3.14) to predict

the point of instability. Figure S shows the variation of Ree with the
cr

similarity parameter s. Figure 6 shows the variation of Ccr and kcr with s.

At s = 0, H = 2.16 and Reecr = 9.2 x 105 is obtained from Tetervin

and Levine's results [44] presented in Fig. 3, compared with 12.3 x 105

derived from direct use of Lees' formula. The difference is due to the

velocity profile at s = 0 not being the same as that of the Falkner-Skan

profile corresponding to H = 2.16. The agreement between the two values

of Re0  is considered to be quite good and the approximate method of
cr

Lees can be used for comparison with experimental data and as a starting

point for stability calculations of the Orr-Sommerfeld equation.

3.2 Numerical Solution of the Orr-Sommerfeld Equatior. for the Expansion
Wave Boundary Layer

In order to confirm the accuracy of Lees' or Lin's method as applied

to the expansion wave flow, it is desired to make some comparison with

results obtained by more exact solution of the quasi-steady, quasi-parallel

stability model. Towards this purpose, the Orr-Sommerfeld equation (Eq. 3.4)

was solved numerically to obtain the quasi-steady, quasi-parallel neutral

stability curve. Because of the large stabilizing pressure gradients in

the expansion wave, the Reynolds numbers for the neutral stability curve

are much larger than those typically encountered in stability studies.

The large Reynolds numbers made this numerical analysis considerably more

difficult than at first anticipated. The calculations were therefore

limited to the case of the boundary layer flow at the axpansion wave head

I II _ _ ..-" .-- ' z , x . . . _ _ __ _ _I _ I|I _
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(s = 0) which can be assumed to be incompressible. The velocity profile

close to the expansion wave head (s = 0) is identical to the unsteady

laminar boundary layer formed on a semi-infinite flat plate undergoing

a constant acceleration from rest (Ref. 2).

The technique used to find the neutral stability curve is the well

known shooting method. The method of orthonormalization is used to

improve accuracy. The eigenvalues k and c were specified to be real and

the values of k and c satisfying the boundary conditions at the wall were

searched for. The integration is started outside the boundary layer at

6 which is 1.5 times the boundary layer thickness and where the

asymptotic behavior of the eigenfunction solutiors are known. Outside the

boundary layer, the inviscid form of the Orr-Sommerfeld equation (Eq. 3.4)

is given by:

--.] [(*'"k - 2k 2  0) + ] + (k-w)(." - k2 €) = 0 (3.17)

The solutions to the fourth order differential eqiation (Eq. 3.17) are

0= -kn. 0=e- k2+ike (k-w) n

3= e kn; 04 = eVk2+iRe(k-w) n

Where 0 = 01 + A.'02 + B.'03 + C04" Since 0 must decay as n becomes large,

B = C = I. At the wall, the following boundary conditions must be satisfied

(a) a t1 + A*2 = 0
and (3.18)

(b) 011 + A02' = 0

The asymptotic solutions €I and 02 are used to integrate the Orr-
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Sommerfeld equation (Eq. 3.4) from n = 6 to the wall. At the wall the

second of the boundary conditions is used to determine A. The value of

A is then used to determine if the first boundary condition is satisfied.

If not, new eigenvalues c and k are used and the process repeated until

the boundary conditions are satisfied to within 10 accuracy. The values

of 1l 02' O1' and 02' determined from the final orthonormalization per-

formed at the wall are used for the above mentioned convergence test.

A program called STABIL was developed for the above mentioned purpose.

The program used a single precision, predictor-corrector type subroutine

called CHPCG which performed the integration of the O:r-Sommerfeld equa-

tion for different eigenvalues. At several stages along the path of

integration, the solution vectors 0l and 02 were arthonormalized using the

Gram-Schmidt procedure. The solution vectors 0I and 02 are given by the

solutions 1' 02 and their derivatives as follows:

i= (020202110211)

For each orthonormalization performed, OI ant 02 were normalized so

that they both became unit vectors. The normalized vector 02 was then

corrected by the Gram-Schmidt procedure so that it wa!. orthogonal to 0 1

(i"e., i1i2 = 0). The integration was resumed using the new orthonormal

vector solutions. Orthonormalizations were performed at the beginning of

the integration (n = 6) and at the wall (n = 0) as well as in between.

The use of orthogonalization or orthonormali-ation ensures that the

solutions *1 and *2 remain orthogonal and its use is standard in correcting

for error built up due to integration, especially at large Reynold numbers

as is the case in the present study. An optimization technique was used
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to find the eigenvalues which gave the smallest value of the first boundary

condition. Optimization subroutine CONGRA which uses the conjugate gradient

method, Ref. 52, was used to find the eigenvalues to four significant fig-

ures. The program was first tested on the plane Poiseuille flow and the

Blasius boundary layer flow. The search for the eigenvalues was started

using previous results [27,39] for the test problems and using the approxi-

mate method results already obtained in Sec. 3.1 for the present problem

(s = 0).

The program was tested for the Blasius boundary iayer and yielded

eigenvalues which agreed with Jordinson [27] to the Lourth decimal place.

These are summarized in Table I. The eigenfunctions of the Blasius boundary

layer for Re V = 998, k = .3086 - i .0057 and w = .112 were computed without

orthonormalizing. For *r' agreement is good with Jordinson's results even

though the integration was started at y/6* = 3.4 rather than 6. The imaginary

part of the eigenfunction 0i and its derivative oi' are much smaller than the

real parts *r and *r" so that the relative error for y/6* > 1.2 was much

larger. The errors are due to the orthogonalizat-*on not being used for the

eigenfunction computations. Attempts were made to perform the eigenfunction

evaluations using orthogonalization but the subroutine developed did not

succeed for unknown reasons. The use of orthogonalization for eigenfunction

evaluation is almost a necessity for high Reynolds numbers (Re6, > 1000).

Results for the Expansion Wave Boundary Layer

For the expansion wave boundary layer, the flow is incompressible at

the wave head (s = 0) and the velocity U(n) may be given by Eq. (2.18) as

follows: 2 2

U(n) = 1 - (1 erfc( + -- e
7.

~777AL
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I This expression for U(n) is used in Eq. (3.4) to determine the eigen-

values kr and wr on the neutral stability curve. The starting point of the

integration was chosen as n = 6 at which point U = 1.0000 and U1 = -.00005.

Due to the large Reynolds numbers involved, the eigensolution was found

to be very small (1021 < e-3 0 0  so that when squr.red in the first ortho-

normalization, it was set equal to zero. *2 and its derivatives were

200
multiplied by a constant (e2 ) prior to the first orthonormalization. Due

to the large Reynolds numbers involved, 24 orthogonalizations and 384

equal steps were used in integrating from n = 6 to y - 0 for Re,* < 30,000.

For Rep > 30,000, the number of steps was doubled.

At the wall, the second boundary condition (-f Eq. (3.18) was used to

evaluate the constant A which was used to test if the first boundary condi-

tion (€ 0) was satisfied. If not, new eigenvalues were selected and the

process outlined above repeated. The second boundary condition could not be

satisfied exactly except within approximately 5 x 10"$ .

The search for eigenvalues on the neutral stability curve is conducted

by setting ki = 
= 0 and finding kr and wr for given Re,*- From the

approximate analysis of Sec. 3.2, Rep 26609, k = .4039, and wc=i rcr cr
cr

.0728. The numerical integration for Rep~ = 26609 gavie k cr = 4085 and

Wcr = .0786. Neutral curve eigenvalues were subsequently determined for

other values of ReP,. The resulting eigenvalues are shown in Table II

and the neutral curve is shown in Fig. 7. The critical Reynolds number

Re6p is found to be 25488, about 4% less than that predicted by Lees'
cr

approximate method. The computer program used is further discussed in

Appendix A.

I----_-_
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3.3 The Method of Multiple Scales for the Stability of Unsteady Laminar
Boundary Layers

Section 3.2 dealt with numerical solution of the Orr-Somerfeld

equation describing a quasi-parallel, quasi-steady medel of the stability

of the expansion-wave boundary layer. The nature of this flow permits

development of a singular perturbation technique to obtain more accurate

results in the case of small departures from thi; limiting quasi-

parallel, quasi-steady model. This section outlines such a perturbation

analysis in fairly general terms, applicable to any unsteady boundary

layer with such small departures. Full numerical application of the

method to a specific problem is a large undertaking and was beyond the

scope of the present study. However, the first step of such applica-

tion (and probably the most difficult) is the solution of the limiting

quasi-steady, quasi-parallel model, which was done as has been described

in Sec. 3.2.

The perturbation method used is an extension of the method of multiple

scales used by Saric and Nayfeh [28] to account for spatial nonparallel

effects only. The mean boundary layer flow is assumed to vary in both time

and space much more slowly than the disturbance "ield. For simplicity in

the initial development of the method the unsteady mean flow is assumed

to be incompressible, and both the mean flow and the disturbance field are

assumed two-dimensional. The starting point is therefore Eq. (3.1) govern-

ing the (linearized) disturbance stream function

(V2 )t + *y(V2 )x + (V2 )xy ix(V2 )

(V 2T) yx V4 (3.1)
y x e
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where j = j(x,y,t) is the mean flow stream function which satisfies

Re (3.19)

V2- -y2- - 2- 1 4-*t* x* keV(.9

The boundary conditions on * are assumed such that U' = 3*/y and V' =

-D*/ax are 0 at y = 0 and vanish as y + =. Equation (3.19) is the exact

Navier Stokes equation governing the mean flow. The customary boundary

layer representation of the mean flow is the leading approximation to

Eq. (3.19) for large Reynolds number Re = uR6R/V . The boundary

conditions on the mean flow velocity components U = ai/ay and V = -aW/ax

may be taken as U = V = 0 at y = 0 and U = Ue(x,t) at y w.

The dimensional quantities 6 R and uRP by which x,y,t,i and p are

made nondimensional, specify a representative dimension of the mean flow

along y and a representative velocity of the mean flcw along x, respec-

tively. It is assumed that the disturbance field is characterized by

time and x- length scales of roughly the order of magnitudes of 6R/uR

and 6R, respectively, i.e., by unit magnitude of x and t. The spatial

variation of the mean flow along x is assumed to be characterized by

a "slow" space variable x = ex, where c << 1 is a sm all parameter yet

to be chosen. The introduction of xI in place of x in Eq. (3.19) for

the mean flow then suggests the introduction of -.n analogous slow time

variable t1 = ct to characterize the mean-flow time variation, and

further indicates a convenient choice for c to be c = 1/Re = vR/(uR6R).

To summarize the functional dependencies at this point, we now have

= '(x,x,y,t,tl;c) and 4 = (xl,y,tl;c).

The perturbation analysis to follow requires e <., 1, or Re >> 1.

It is of interest to note that c may be expressee as

1 . .. .. . . ..



34

6R/UR

5R /VR

Written in this way, e represents the ratio of two characteristic times:

the time 6R/UR, which is of the order of the disturbance time, and

6R2 /VR which is of the order of the time for shear e:ffects to diffuse

across the mean flow. Thus E << 1 implies that the disturbance shear field

is localized and dependent primarily on local instantaneous conditions in

the mean flow. The interpretation of Shen's criterion for quasi-steady

stability (discussed in Sec. 3.1) in terms of c gives c << (vRtf/6R2)3/2

as the requirement, where tf is the time characterizing change of

the mean flow. If tf e 6R 2/VR, then Shen's criterior, is thus always

satisfied when e << 1. In particular, this will always be so for mean

flows which are near quasi-steady, since in that case tf >> 6R2/VR tends

to apply. When tf < 5R2/VR, smaller values of e are presumably necessary

in order to satisfy Shen's criterion.

Perturbation Equations

Extending the approach of Ref. 28, the disturbance stream function

is assumed to have the form

i0
= *(xl,tl,y;c)eo (3.20)

where the amplitude function * depends on x1 ,t1 , and c, in addition to y.

00 is a new independent variable of phase whose x and t derivatives

Be0 /ax = k0 (X1 ,t1)

(3.21)

e0 /at = -W0 (xltl)

L
) (
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define disturbance wave number k and angular frequency wo0 both

of which are assumed to depend on x1 and tI in general. Equation (3.1)
is next transformed as regards the x and t derivatives of 4 by means of

the relations

aa aw + C-
at We at1

The amplitude 0 is then expanded as a power series in c, i.e., *

0 (Xlpytl) + e0l(xly,tl) + .... where £01 << o, etc. is assumed.

Likewise the x and y velocity components of the mean flow, U and V,

respectively, are expanded in similar form, i.e., U = U0 (xlY,t1 ) +

£Ul(Xly,tl) + ..., and V = cVo (xl,y,tl) + e2Vl ( lytl) + .... U0

and V0 are thus the leading boundary layer approximations for the mean

flow velocities; U1, V1 etc. represent higher order boundary layer

effects. When like coefficients of the various powers of c are finally

equated, the equations governing 0o and 01 are obtaired as follows:

( 2 20o
L( 0) = - -k)0o iRek = 02o -

a y k) 0  ie[( 0  ay

2
a2U
y2°  01 = 0 (3.22)

with boundary conditions

*o =3 /ay= 0 at y =0
0 0

(3.23)

01 0a s y
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2 a,0 0_3_____

L(01) =[Re(2kow° - 3Uk2 -- T ) + 4iko ]- + (ReUo - 4iko) y2ax1
ay

32 2 2k o

+ ReV( --k .1-) - Re- --
ay ay2 a

+ [(Rewo - 3ReUok° + 6iko2}, o - 2i y2- a!
0 0 0 O - ay 1

iRek o [U1 ( - - ko 2 - o

y2 ay

2 o 3003k

-Rek -+ Re 2 - 2Rek tl- (3.24)
0 t 3 at 12 0 0 at1

with boundary conditions

01 301/ay' 0 at y = 0

(3.25)

1+0 asy

Equation (3.22) governing 0o is seen to be identical in form to

Eq. (3.4), the Orr-Sommerfeld equation for steadr parallel base flow,

except that k0 , W , and U0 now depend on x1 and .V Equation (3.22)

thus defines a secular equation of the form F(w0 ko, xl,tl.,Re) = 0. For

given values of x1 , ti, and Re, the eigenvalues k° and w 0 and the

eigenfunction 00 are thus determined as for the case of a steady

parallel base flow. However, 00 is only so determined to within an

arbitrary multiplying function A = A(xl,tl) whict, will depend on x,

and t1 in general. In order to obtain a valid leading approximation

for 0o' A(xl'tl) must then be chosen such as to satisfy a certain

solvability condition on Eq. (3.24) governing f1.

Along with the secular equation F(wo,ko,xl,t1 ,Re) = 0 we have

9 -.---- '-- -- ....------•
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the implied functional relations wo = W0 (xltl) and ko = ko(xl,tl).

For given values of xI, ti, and Re there are thus three relations to

be satisfied by w0 and k0 . Thus for arbitrary changes dxI and dt1 in

x and tI at a fixed value of Re, the corresponding changes dw and
0

dk cannot be independent but must be uniquely related, i.e.,
0

0) =v (3.26)
o Re g

where v is a group velocity dependent on x1, tI, Re, ko, wo-

Because k° = 3o /ax and wo = -o0 /at, it follows that ak0/at =

-w /ax, or,

3k aw
t 0 (3.27)

If the mean flow depends on both x1 and ti, as for the expansion wave

boundary layer, then both k and w0 will depend on x1 and tI also.

If the mean flow is steady, i.e., independent of t1, then 3k0/at 1 = 0

and therefore w /ax = 0 from Eq. (3.27). In this case k varies with

x but w does not, and vg = 0. If the mean flow is independent of x

then 3w 0/axl = 0. It then follows from Eq. (3.27) that w varies with

t1 but k does not, and vg = . An example here is the mean flow

generated in the Rayleigh-type problem, i.e., an infinite plane wall

undergoing acceleration. The group velocity vg relates the x1 and t1

derivatives of k and w0. For subsequent use the pertinent relationso

may be summarized as follows:

wo/axl awo/atl 3ko/at 1  ao/atlVg /3X1  0/t 1  0ko/ 1  0 1 (3.28)

These relations follow from the differential expressions for dw0 and dko.

Regarding the nonhomogeneous Eq. (3.24) for *l' the right side terms
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are associated with the following departures from the case of a parallel

steady base flow: a dependence of 00 and k on xI and tI, a normal

velocity componenteVo, and a higher-order boundary-layer velocity

increment cU1.

Method of Solution

As previously mentioned, 0 is only determined from Eq. (3.22) to

within a multiplying function A(xl,tl), so that (following the notation

of Ref. 28) 00 may be expressed in the form

00 = A(xl,tl)C(Y;xl,t1 ) (3.29)

where L( ) 0 0, with boundary conditions on C th same as Eq. (3.23).

The condition determining A is the solvability condition for Eq. (3.24),

which is that the right side or non-homogeneous terms be orthogonal

to the eigenfunction *(y;xl,tl) which solves the adjoint homogeneous

equation

a2  22o [ 0 a 2
= (-- ko0 ) 2  * - iRek o(Uo - k 2*)

o k0  B.

+ y 2 0 ] = 0 (3.30)

with boundary conditions *0 at y = 0By

-* 0 as y .

Substitution of o= A4 into the right side of Eq. (3.24) gives

L(01 ) = ReJ where
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a2 a ko a_ 3C
J=5 [B~B--~-+ [B1  + Bx2ay X1 1 2a y ax 1

2 3k 2
+ (B 3 + B a---.2 + B5C + B7 + B7 2

B 3 4 -- 3x 6 -. -+ B 7
ay 1 a

3 y3k
a 3 ' B .- +B---a
ay 1yt 1

+ Y B1O (3.31)
ay 1

and

a2U

B1 = 2ko ° - 3Uoko 2 -0 4iko3/Reay2

B2 = U - 4ik /Re

B 3 = 0 3Uk + 6ik0 2/Re

B4 = -2i/ReI4
2

B5 = -iko("U + ko2U
5 0 ay2 0U1)

2VB6 2 o o2o B7 =ikoU1

B8 =V 0  B9 =-2k 0 10 -ko2

The solvability condition requiring orthogonality is then

J7*dy 0
00
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which can be expressed in the form

alnA f0 (3.32)
1 ax 1  g2 .1 t -2

where

g= - (BIC + B2  
*d y

ay

2 2aB2  3B2__ * a2 *a92 0 [(B1 
+  2 )  ay y 2 2 dy

2 A 2 3+ O*[ (B3 a B4 + B5 c + B6a ~ 3]
3;+B472) 3x---6 Wy + 87  2 B8 _y3 ];*dy

0 ay 1 ay ay

-j ( 2f, __ + B. ClO5dy

o ay2

o aY2 o+ B 1 0 V).a1+ JO B at 1 *dy (3.33)

If A is expressed in the form A = A eie $ 1, where A 0s an arbitrary

constant, then

aHnA .31 ae1
xx a = ikl(xl,t1 )

atnA at 1  at -i1x 9 1
8 nA~ ~ _-E 1 = -iWlX

The le ling approximationg for * then becomes

ie°  ieO i(eoce )  A
0 = Aie =A 0 e =Aoe

0z

where, in summary,

e =e o  , ce 1

.. . .. .e 0  ..* -- 1

. .. . _ __.. ." -_ I II
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ae Do
= - x+ C = ko(x1 't1 ) + ckl(xlotl) = k(x1 'tl;C)

ae aeo a 0l
-*= 0 + C at -W0 (Xl'tl) - cwl(xltl)= -W(xlstl;e) (3.34)

ck and cw1 , which depend on both xI and t in g.neral, are thus

corrections to w and k on account of the x1 and tI dependence of

the mean flow. In terms of w1 and k1 Eq. (3.32) becomes

iklg1  - g2 - iW1f1 - f2 
= 0 (3.35)

Equation (3.35) provides one relation determining w1 and k1 , and a

second relation is therefore needed. To obtain this, consider the

secular relation governing w0 and k to be expressed in the form

WO = f(k0 xi,tlRe) along with the implicit relations wo = W (xl'tl )

andk = ko(Xltl). These three relations lead to the result that

(-* .0 v , where the group velocity v is a unique point function ofoRe g g

Wo, ko. xl' tl, Re. An arbitrary choice of ko, X1, t,, and Re determines

w from the above secular relation and must therefore determine w1 and

k1 also. Thus, implicitly at least, we can similarly write 1

g(koxl,tlRe) and k= h(koxj,tlRe), along with the implicit

relations w = WI(xlt 1 ) and k, = kl(xl,tl). It follows that the

quantities (w 1/ak o)Re and (ak1/ak o)Re must also be point functions of

wo ko0, x1  tl, Re, as is vg. The following differential expressions

apply for arbitrary changes dx1 and dt1 with Re constant.

dw1 = 1 dx + a dtl

I 1 ak1
akaIdk 1 ffT dXl + ak dr1

1 ax 1 a t 1 1

Because aw I/ak 0 and Ak1/ak 0 are point functions and dx1 , dt I are arbitrary
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changes, it then follows that 3w /ako = (awi/;Xl)/(3ko/axl) (putting

dt1 = 0) and ak11ako = (3k /at)/(ako/at1) (putting dxl = 0). Dividing

these last two expressions and using the fact that Ak1/atI = -ai/ax1

gives (aw1/3kl)Re = -(ak o/atl)/(3ko/axl) = Vg* Now %g does not depend

on either wI or kI , so that the last expression can be integrated to

give

1 =v kl (3.36)

Ig

where the arbitrary constant must be zero in order that = 0 for

vg = 0 (which occurs when the base flow depends on x, only). In

a less formal way Eq. (3.36) follows from interpreting ew1 and ek 1 as

small differential changes dw° and dko in w and ko, respectively, and

the result that dw0/dk° = vg for Re constant.

From Eqs. (3.35) and (3.36), wI and k may now be expressed as

Sg 2 
+ f2i~l - gl - VgflV

gl1
(3.37)

A g2 + f2

ik- gl -v gl

Both w and k will be nonzero when the mean flow varies with both x

and tI. If the mean flow is steady then vg = 0 and f2 = 0 (Eq. (3.33)),

so that wI = 0 and ikI = g2/g, in that case, in agreement with Ref. 28.

If the mean flow is independent of x1 then v = and g2 = 0 (Eq. (3.33),

with Vo = U1  = 0), so that k1 = 0 and il = -f2/fl.

Evaluation of w 1 and k

In order to evaluate w and k from Eq. (3.37) the functions fl, f2,

g1 9 g2, and vg must be evaluated. The f and g functions, defined in Eq.A~ ~~~2 ___________
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(3.33), require determination of 3, , C/x 1 /, WIt 1  0 k/ax1 , and

3k0/at1 . C and C* are obtained by solution of L(C) = 0 and L*(C*) = 0

(Eqs. 3.22 and 3.30, respectively) which have the same eigenvalues w 0

and ko . Differentiation of L(4) 0 with respect to x1 and t1 leads to,
0

respectively,

a aw
L ho + h +h

2x ax1  3 x
(3.38)

) h4  h2 at+ 3  o
111

with boundary conditions

a_ = a C - - a C - 0 at y 0
ax ax 1 ay at 1  at ay

and 0 as y

x a 1

The h functions in Eq. (3.38) are

h ~e Ck2 au -Ca 3 U0
1 ~ ~~ 0 a2 0 ax1I ay 2ax1

hl iReko[ay _ ko )- _ 2 .

2 2 a2U-k a ~ 2 . ~2 0_
h 2k ko) + iRe(U 3U k+2w k

ay a Y y 2 0000 ay2

h =iRe(-- ko 2 )
ay

24 aU 3 U
yiR [ 2 - k 0 (3.39)

ay I t ay at1

Equation (3.38) permits numerical solution for aC/ax and ac/at

when the xI and tI derivatives of k0 and w0 entering the right side are

known. The latter are determined from the solvability condition for

Eq. (3.38) which requires that the right side terms be orthogonal to *.
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This condition can be expressed as

3k +1 0
1 + 2-x1 3 ax1  0

(3.40)
ak aw

4 2 at + 1 3at 
= 0

where

I hl*dy = -iRek °  (k 2 * + + 2 y

12 ayay xo y

12 = h21*dy 13 = h3c*dy
00

4 =[h*dy= -iRek (k 2 * + -- + 2 y (3.41)

14 4  0 7 2 (3.41)a

From Eq. (3.28) for v and Eq. (3.40) v is obtained explicitly as
g g

14Vg i1(3.42)

and the derivatives of w and k as
o 0

I vi° _ lg ako = i

x 1  12+13Vg 1 2 +I3Vg
(3.43)

w I14 Vg WF 0 4
t1 1 2 +1 Ivg a"1 12 + 3 .

All of the basic relations necessary to apply the analysis have now

been obtained.

'S__ _
I II .. .. -L~ ~ ~I| .,,,--j
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Numerical Application of the Analysis

The numerical application of the foregoing perturbation analysis

to a specific unsteady boundary layer flow is clearly a rather formidable

task which, as mentioned previously, was beyond the scope of the present

study. However, it is of interest to note briefly the procedural steps

involved in the application to calculation of a neutral stability curve.

In general, both w1 and k1 may be nonzero complex quantities whose

imaginary parts will therefore contribute to the amplification or decay

of disturbances in time and space. Extending t1e approach of Ref. 28

for steady boundary layer flows, the condition for neutral stability may

be taken to be Woi + li = koi + ekli = 0, where subscript i denotes

the imaginary part of the complex quantity woR + iwo.-, etc. With this

definition of neutral stability, the overall calculation could proceed

interatively as follows:

1. For given values of x1 , tl, Re determine the eigenvalues k

and w for which koi = woi = 0. This entails solution of L(t)
0 01 0

= 0 (Eq. 3.22 with o C) which is effectively the quasi-

parallel, quasi-steady problem as calculated in Sec. 3.2 for

the expansion-wave boundary layer.

2. For the given xl, t1, Re, and the eigenvalues wo and k° obtained

in step 1 determine k1 and w1 (Eq. 3.37".

3. Using k1 and w1 from step 2, recalculate step 1 to obtain new

k and w values for which koi f -ekli and wai =
0 0 i M - iZ - ) -

4. Repeat step 2 etc. until satisfactory convergence is obtained.
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4. EXVLRIMENTAL PROGRAM ON TRANSITION TIMES

4.1 Scope of Experimental Study

As mentioned in the introduction, the experimental investigation

was primarily concerned with the detection of laminar to turbulent

boundary layer transition for the expansion wav, flow, but some experi-

ments were performed for the detection of shock wave boundary layer

transition. The basic apparatus used to generate these flows is an

expansion wave tube sealed by a diaphragm which ruptures under an

initial pressure difference. For generation of the expansion waves, the

tube is initially pressurized above atmospheric or room pressure, and the

tube flow discharges directly to the room. For the generation of shock

waves, the tube is partially evacuated to a pressure level below room

pressure and the apparatus functions like a shock tube of infinite area

ratio with a driver pressure of one atmosphere. Although the tube was

initially designed for boundary layer studies, it became necessary in

the course of the investigation to substantially redesign some portions

as described in Sec. 4.2. In all experiments, piezoelectric pressure

transducers were used to measure local static pressure histories; these

are described briefly in Sec. 4.3.

Three methods were used to detect boundary layer transition: a flush

hot-film surface anemometer, a thin film surface temperature thermometer,

and a hot-wire anemometer. A few experiments were performed using the

flush hot-film enamometer at a low constant current so that it responded

to surface temperature. The devices used to detect boundary layer transition

are described in Sec. 4.4. For the expansion wave, m.ost of the transition

__ _ _ _ _ _ _ _
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time data was obtained at distances of 2.17, 4.7 and 8.17 feet from the

diaphragm location. The pressure transducers were lo.:ated within 2 inches

of the above distances, either at 2.0, 4.53 or 8.0 feet from the diaphragm.

The initial pressure level in the expansion tube was varied from 35 to

145 psia in order to assess the effect of densit). The test gas used was

commercially bottled dry air. For the shock wave experiments, transition

times were measured at 7.63 feet from the diaphragm location and at initial

pressures of 1 psia to 7 psia. The preceding range of experimental conditions

was effectively determined by the limitations of the apparatus. Figure 9

shows a schematic of the expansion-tube and shock tube configurations.

The flow times involved were typically of tha order of a few milli-

seconds. All signal outputs were displayed on a Tektronix Dual Beam-Type

555-Oscilloscope and photographed. The oscilloscope sweep was triggered

by the breaking of an aluminum foil due to the diaphregm rupture. The

outputs from the anemometers and the charge amplifiers were simultaneouslyII
displayed on the lower beam by using a Tektronix J.A-4 plug-in unit. The
output from the thin film thermometerrequired a much higher gain and was

displayed independently on the upper beam using a Tektronix 1A-7 differen-

tial amplifier. The oscilloscope sweep calibration was checked using a

Hewlett-Packard signal generator.

4.2 The Expansion Wave Tube

The expansion wave tube used consists primarily of a steel tube with

rectangular interior cross-section of 1-1/2 x 5 inches. The total length

of the tube is 15-1/2 feet made up of four interchangeable sections of 6,

4 and 4 feet and one section of 19 inches. The largest three sections are

milled out of solid stock and in the form of a channel covered by a top
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plate. The 19-inch section is made up of two aluminum blocks clamped

between two steel plates. The channel and the top plates are held together

tightly by socket head cap screws at 3 inch intervals.

Instrumentation ports of 2-inch diameter are provided in each section

at 1-foot intervals for the 6-foot section, at 3-inch intervals in one of

the 4-foot sections, and at 1 foot from one end of the 19-inch section.

The 4-foot test section made especially for the presert experiments is

composed of a channel which has a 2-inch diameter port located 5-1/2 inches

from one end, mainly used for hot wire instrumentation. The test channel

is covered by a steel plate which has an instrumentation port located 4-1/2

inches from the end, used for static pressure measurewents. The test

plate also has two small ports at 6-1/2 inches from the end, designed to

accommodate the flush hot-film anemometer to very close tolerances. The

flush hot-film anemometer ports are at the same location as the hot-wire

anemometer on the opposite wall. The centerline of all but one of the

instrumentation ports coincide with the centerline of the 5-inch side wall.

One of the flush hot-film anemometer ports is located 1.75 inches above the

centerline (.75 inches from corner) to observe the efFect of the corner flow

on transition. Figure 9 shows the test section configurations.

The S-inch side wall is 5/8 inches thick so that the maximum wall

deflection for the highest pressure used (145 psia) was less than .002

inches. The expansion tube is designed especially for boundary layer studies

so that the interior surface finish is of high quality. All steel parts of

the tube were plated by Kanigen* Electrodeless Nickel to prevent rust. The

finish of the mirror-like interior surface is such thaz the surface roughness

*Trade name for 92% pure Nickel and 8% Nickel Phosphide.
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is less than 20U inches. The only significant protrLsions affecting the

boundary layer are those due to the small steps made by the flush hot-

film anemometer probe. For the special test section used, the protrusions

due to the flush hot-film and the hot-wire instrumentation plug are less

than .0005 inch; the hot-wire instrumentation plug was specially ground

and plated while positioned in the channel.

An air line at the tube end connects through tubing to the air supply,

the vacuum pump, and the pressure gauges. For initial pressure levels above

atmospheric, Heist: Bourdon gauges are used to measure initial tube pressure.

Pressure levels below atmospheric were measured using a Wallace and Tiernan

precision vacuum gauge which was calibrated against a U-tube manometer and

a precision barometer (at room pressure). The initial tube temperature was

obtained from the average reading of two precision thermometers which are

in good thermal contact with the tube and accurate to .1*C.

The expansion waves are formed by rapid rupture of a mylar diaphragm.

The diaphragm is clamped to seal the tube end using clamping plates of

different opening areas. The mylar diaphragms used were either 1, 3, 5

or 7 thousandth inch in thickness, The clamping plate and the myiar thick-

ness are chosen such that the mylar withstands the initial pressured used

and ruptures rapidly when subjected to electrical heating from a wire

taped to the diaphragm. The wave form of the sho:k wave is generated by

puncturing a 1 thousands inch mylar diaphragm.

One external factor present in all shock-tube type studies of wall

boundary layer transition is transient vibration of the tube walls due to

the transient loading imposed (following the diaphragm burst) by the forma-

tion and propagation of the wave, whether shock or expansion wave. In

addition to any direct effects of the wall motion on boundary layer

stability (e.g., due to the changed wall velocity boundary conditions) the
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wall motion will also generate an acoustic or pressure disturbance field

whose components will have wavelengths dependent on the spectrum of wall

frequencies as well as on the gas sound speed. No previous investigations

appear to have been made of the possible influence of such wall vibration

on the boundary-layer transition times observed in wave induced flows. A

study of the wall vibration effects on transition was beyond the scope of

the present work. However, some brief comments on the question are in order.

The wall mounted pressure transducers used in the present study (Sec.

4.3) showed effects of tube wall vibration at the highest initial tube

pressure. This is illustrated by the pressure-time records of Fig. 58 for

an initial tube pressure level of 125 psia and for several distances from

the diaphragm location. The fluctuations in pressure start before the

expansion wavehead arrival and continue to be superimposed on the pressure

record after wave arrival. The observed lowest frequency of the oscillations

is roughly 2500 Hz and the amplitude approximately .5 psi. The actual wall

response to the travelling load is transient and is a complex superposition

of the eigen modes of vibration. An estimate of the lowest natural

frequency of vibration was made for clamped wall edges and simply supported

wall edges giving 3700 Hz and 1660 Hz respectively. The tube wall edges

are actually neither clamped nor simply supported, so that the observed

frequency of oscillation (2500 Hz) is in between these estimates. Figure

59 shows a simultaneous record of wall acceleratien versus time obtained

with a Kistler 808 quartz accelerometer mounted at the midpoint of the 5-inch

sidewall. The high frequency components are very evident in the accelera-

tion. The maximum acceleration for the conditions shown is of the order

2
of 1 g (i.e., 32 ft/sec )
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4.3 Static Pressure Measurements

The local static pressure at the wall is measured using 603A Kistler

piezoelectric pressure transducers which are mounted Flush in the center of

2-inch instrumentation plugs. The transducers are embedded in a phenolic

laminated core to minimize transmission of mechanical shock. The sensing

diaphragm of the transducer is less than 0.2 inches in diameter, so that

the spatial resolution was more than adequate for the expansion wave forms.

The high impedence output of the transducers is connected by special low

noise cables to Kistler 505-A charge amplifiers. The transducers and

connectors were cleaned frequently using Freon solvent to maintain the high

impedence and minimize charge leakage. The dynamic calibration of the

transducers was obtained using the flow behind a shock wave and agree

within ±5% of the calibration supplied by the maniufacturer.

4.4 Instrumentation for Detection of Boundary Layer Transition

Three techniques were used to detect boundary layer transition: a

flush hot-film anemometer, a hot-wire anemometer, and a thin-film surface

temperature thermometer. The experimental data is interpreted in

Secs. 5.2-5.4.

Flush Hot-Film Anemometer

A DISA 55A90 flush mounting anemometer probe was utilized as the

primary instrument to detect boundary layer transition. The probe is

composed of a quartz rod on which a nickel film is sputtered on the .187

inch diameter plane end. A thin protective quartz coating is applied to

the sensor. The film is .2mm long and lmm wide and the quartz coating is

approximately .5m thick. The film has a film resistance of approximately

I _ _ _ _ _ _ _
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1SO at room conditions and a temperature coefficient of resistance of .25%

per *C. A picture of the probe is shown in Fig. 13.

The probe was mounted in a 2-inch diameter &luminum instrumentation

plug as well as being directly placed in the small ports of the special

test section. The probes were installed such that they were recessed or

protruded by less than .0005 inches from the surface. This was accomplished by

use of brass shims which varied in thickness from .0C05 to .005 inches.

Proper alignment of the film so that the 1mm width was closely perpendicular

to the flow direction was achieved visually prior to channel and cover plate

assembly.

The probes were connected by a special probe connector and a shielded

5 meter cable to a DISA 55D01 anemometer. The anemometer maintains the

probe resistance and thus the temperature at some constant value determined

by the decade resistance setting on the anemometer. Standard constant

temperature anemometer procedures were used as outlined in the Disa 55D01

manual to obtain the best results. A square wave was used to adjust for

cable length and capacitance yielding a frequency response greater than

10 Ki-z, as illustrated by Fig. 12. Typical overheat ratios used were .2,

.3, .5 and .6 corresponding to temperatures above ambient of 800C, 120 0C,

200C and 240°C, respectively. The interpretation of the flush hot-film

results are discussed in Sec. 5.2.

Hot-Wire Anemometer

Three types of hot-wire probes supplied by Thermo Systems, Inc., were

used in this investigation; a straight probe, a right angle probe and an

86.50 probe. The last two probes are particularly useful for measurements

close to the wall. The straight probe was only used for observing inviscid

I _ ___ ______ ___ ___ ___ ___ ___
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flow properties. All probe angles referred to are measured between the

wire supports and the probe stem which protrudes fro, the side wall.

Figure 15a is a schematic showing an 86.50 probe mounted in the side wall.

The hot wire is mounted in a 2-inch diameter steel plug which was ground

and plated while installed in the channel and is thus perfectly flush with

the channel surface. The probe stem hole is located at the edge of the

instrumentation plug, so that right angle or similar type probes can be

turned in a way that the plug edge does not interfere with the observed

boundary layer flow and so that the probe is at the same location as the

flush hot-film on the opposite wall. A photograph of this installed

probe is shown in Fig. 15b.

The hot wire probe is secured in a 40 threads to the inch screw

which varies its location from the wall. A disc attached to the probe

body indicates the alignment of the hot wire with respect to the flow

direction and is used to rotate the probe while maintaining the same dis-

tance away from the wall. The hot wire location from the wall is determined

for right angle type probes by bringing the wire within a few wire diameters

of the plug surface. At that point, the mirror image appears on the highly

polished surface and is observed under a microscope. The distance between

the wire and its image is compared with some reference length, such as the

wire diameter or some known shim stock thickness, which is at the same

approximate location under the microscope. Half *f this distance is then

used as the reference point for locating the wire. The hot-wire orienta-

tion with respect to the flow direction is determined by aligning the screw

attached to the disc so that it points in the same direction as the wire

supports. The disk is secured to the probe stem and rotates with it. The

above mentioned visual alignment is estimated to be within 5° accuracy.

The probes were connected by an adapter and a shielded 5 meter cable to
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a Disa 55D01 anemomter unit and a procedure similar to that of the

previous section was used for measuring the hot wire output.

Using incompressible potential flow theory, King [57] considered

the heat loss from small diameter cylinders of infinite length placed

normal to a stream of fluid and developed the following relation:

12R = (Au + B)(T-T) (4.1)

where B = KX, A = V2wKCppd, Ts is the stagnation temperature for an
p

unheated wire, Tw is the wire temperature, I the wire length and d the

diameter. Experimental studies with hot wires have shown that King's law

is not exact but that experimental evaluation of the constants A and B

yield good results. A and B can be treated as constants only as long as no

large change in temperature or density occurs. For compressible flows, it

thus becomes necessary to re-write King's law in the following form

(Ref. 46).

1 2Rw (A/ u + B)(T -T ) (4.2)

The interpretation of the hot-wire data is presented in Sec. 5.3.

Thin Film Resistance Thermometer

The initial studies made in the present apparat'as on boundary layer

transition utilized a thin gold film resistance thermometer evaporated

onto a pyrex disk which was flush mounted at the surface. The film had
0

a width of 2mm, a length of 1-1/2 inches and a Thickness of about 150 A.

The response time of this film is less than 10- seconds so that it

responds to the instantaneous temperature at the surface on which it is

mounted.

I|
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The thin film is used as a resistance thermometer of nominal resis-

tance R = 500 ohms in series with a much larger resistance Re = 12,0009

in a constant voltage circuit. The almost constant current is kept to

a minimum to reduce the effect of electrical heating and is typically

less than 5 milli-amps. Small changes in surface temperature are propor-

tional to the change in film voltage AE and are given by:

ATw(t) = CAE~t) (4.3)
faT

where Ef is the initial film voltage, aT is the temperature coefficient of

resistance of the thin film, and C = (1 + Ro/RB) is a correction factor

which compensates for the slight change in current due to resistance

change. Figure 16 shows a photograph of the film and Fig. 17 a schematic

of the circuit used. A Hewlett Packard HP 6207B power supply was used

as the constant voltage source. The film resistance thermometer used was

developed as part of a previous study and a more detailed description of

its construction and operation is given by Srinivasan [5].

The flush constant-current anemometer data was obtained by using

the Disa SSA90 flush mounted anemometer probe at a constant low current

level. The probe thus responds to the surface temperature in a manner

which is very similar to the thin film resistance thermometer. Results

for the thin-film resistance thermometer and the flush constant-current

anemometer are discussed in Sec. 5.4 and comparisons with flush hot-

film, hot-wire, and flush constant current anemometer data made.

.1
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5.0 EXPERIMENTAL RESULTS FOR TRANSITION

As previously mentioned, the main concern of tha experiments was

the determination of transition times for the expansion-wave wall boundary

layer for which very little previous data exists A series of experiments

with shock-wave induced wall boundary layers was also carried out in order

to make comparisons with the very extensive amount of shock-wave transition

data reported by previous investigators. The transition Reynolds numbers

for the shock-wave boundary layer (presented in Sec. 5.6) exceeded those

of previous investigators, which indicated the surface of the expansion-

tube to be extremely smooth.

The responses of the pressure transducer and transition detection

instruments for the expansion wave boundary layer are discussed in Secs.

5.1-5.4. The transition times for the shock-wave boundary layer and the

expansion-wave boundary layer are discussed in Secs. 5.5 and 5.6, respec-

tively.

5.1 Static Pressure

The local pressure-time record was used to find the origin of the x-t

coordinate system, to determine the inviscid flow quantities, and to con-

firm that the waveform and inviscid flow were free from extraneous distur-

bances. At the 8.17 foot location the pressure record also indicated the

arrival of the reflected wave. For the shock wave experiments, two pressure

transducers placed a known distance apart were used to measure the speed

of the shock wave. The local static pressure was recorded for all experi-

ments. Typical pressure-time traces for the expansion wave are shown in

Figs. 18-31. The arrival of the expansion wave head qt the pressure

transducer is indicated by a sudden change in the slope of the pressure-time

,I_ __ _ _
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record. The expansion-wave head arrives at the hot-wire locations and

the flush hot-film locations approximately .15 x 10 - seconds later.

As mentioned in Sec. 2.1, the expansion wave is assumed to be plane

and isentropic with the family of mathematical claracteristics I being

straight lines in the x-t plane as in Figs. la and lb. Ideally, the first

derivatives of the inviscid flow quantities for non-zero initial accelera-

tion are discontinuous at the wave head. This was indeed the case in the

experiments except for a few cases of poor diaphragm rupture.

The partial derivatives of the inviscid flow quantities at the wave

head determine the origin of the x-t coordinate sistem of Figs. la and lb.

As described in Sec. 2.1, the slope of the pressure-time record at the time

of wave head arrival can be used to find the origin from the following

expression:

x -o aP
e

The origin is uniquely determined for each experiment; to = -X /a is

the time that the wave head of an expansion wave originating at X = 0

takes to arrive at X = X .

For a centered expansion wave, the similarity parameter s and thus0

all other inviscid quantities can be determined once t is known. s =

T/(t + T) where T is the time elapsed following tie time of wave head

arrival at a location X = X . At locations close to the diaphragm, the

wave forms generated are non-centered and the inviscid flow quantities

must be determined from the similarity parameter s of Eq. (2.6), i.e.,

s = so+e/a0t. e is the x displacement of fluid particles having velocity

ue from their respective centered wave position, as shown in Fig. lb. s

can be determined from the pressure time record u.iing the relation
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0

The wave form as observed at 2.17 feet from the diaphragm location is

non-centered while those observed at 4.7 and 8.17 feet are closer to being

centered. Table IV shows a comparison of the siilarity parameters s and

s at the observed times of boundary layer transitions. Values of s

larger than s indicate the presence of non-centered wave effects. Some

values of s are substantially smaller than s indicating that the pressure

had essentially ceased to drop prior to the observed transition, i.e., that

transition occurred in a region of essentially steady outer inviscid flow.

The laminar boundary layer of the constant inviscid flow region is still

unsteady, but its stability is no longer influenced by a favorable pressure

gradient. In this region there is still heat being added to the flow at

the wall. This has a destabilizing effect on stability and transition in

that it promotes the occurrence of a point of inflection in the velocity

profile (Tollmien [241).

Most experiments were performed with the exransion tube end fully open

in order to observe transition within the wave and before the constant flow

property region. Due to the large transition times observed, this was not

always possible, as shown in Fig. 18, especially for low initial tube

pressure levels and stations close to the diaphragm. The lowest pressure

behind the expansion wave is determined by the chocking conditions at the

open end due to the boundary layer displacement ecfect and any obstruction

due to the ruptured diaphragm. For low tube pressure levels (<45 psia)

the flow at the open tube end is often unchocked and the wave tail as

determined by the time-pressure record is not well defined.

I
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5.2 Flush Hot-Film Anemometer Results

The primary instrument used to detect boundary layer transition was

the flush hot-film anemometer. This instrument was found to be the most

sensitive of the instruments used for this task. Theoretical analysis of

its response indicated that it should response to the local surface shear

stress in an essentially quasi-steady fashion. Tnis was born out by a

series of calibration experiments. The theoretical analysis of the flush

hot-film response as presented in Appendix B shows the shear stress to be

approximately proportional to the probe current to the third power. The

probe temperature and its resistance are maintained at a set initial

level by the Disa 55D01 anemometer unit.

Expansion Wave Results

For the high transition Reynolds numbers and accelerating pressure

gradient involved, transition occurs abruptly as shown in the expansion

wave records of Figs. 18-37. Figures 18 and 19 show typical response of

the flush hot-film anemometer (FHFA) to transitioi. Signals labelled a

are the static pressure versus time records, while b and c are the simul-

taneous hot-film outputs respectively placed 1.75 inches off the center-

line of the 5-inch side wall (labelled FHFA at corner) and on the center-

line of the 5-inch side wall. At transition shear stress at the wall

increases. This is demonstrated by the sudden increase in heat transfer

from the probe and the accompanying increase in probe current level re-

quired to maintain the probe at the desired temperature level. The

anemometer output almost doubles, indicating that the skin friction

increases by a factor of 6 to 8 over its laminar value.

'I.,
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Early experiments with the flush hot-film to detect expansion-wave

boundary layer transition times were made by mounting the probe in a 2-inch

diameter aluminum instrumentation plug. The aluninum plug was in turn

inserted at the center of the 5-inch side wall so that it was essentially

flush with the steel surface to within .001 inches. For some of these

records, such as those shown in Figs. 32-34, it was ooserved that after

approximately 1.5 x 10-3 seconds, the anemometer output suddenly increased

for a time period, then dropped for some further time period, and finally

increased again. The flow associated with the intermediate time interval

characterized by a high anemometer output is herein termed a turbulent

slug. It is interpreted as follows. Initially the expansion-wave boundary

layer thickness is very small at the time of wave head arrival. The protru-

sion by the edge of the plug can trip the boundary layer (Dryden [471) for

some initial period even though the Reynolds number is substantially

below the critical value determined from stability theory. If the Reynolds

number remains below the critical Reynolds number and the boundary layer

becomes sufficiently thick compared to the protrusion height then the

boundary layer may re-laminarize. The sequence of records of Figs. 32-34

show that the turbulent slug almost disappears below a certain pressure

level and that for increasing pressure levels the duration of the slug

gets longer until finally it merges with what migait be termed the untripped

turbulent boundary layer.

In later attempting to repeat some of the results of Figs. 32-34, it

became apparent that the situation was very sensitive to the degree to

which the plug was tightened in the tube wall. The step size as measured

using a micrometer was less than .0005 inches and could have easily been

altered by tightening or loosening the bolts securing the plug. Shimming

,A _ _ __ _ _ __ _ __
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the plug permitted the observation of longer transition times. Ultimately

the anemometer probes were mounted directly in tie tube wall as previously

described, whicheliminated the turbulent slug and gave the longest transi-

tion times. Occasionally, the aluminum plug was fortuitously mounted in

the side wall so that the turbulent slug was not observed over a large

range of pressures. Figures 35-38 show results for such a case where

the aluminum plug was mounted in the channel wall and a second hot-film

probe was inserted at the center of the opposite side wall (plate side).

The simultaneously observed transition times are in good agreement,

especially at the lower pressure levels (Figs. 35, 36). For initial

tube pressure levels larger than 85 psia, the probe mounted in the

aluminum plug indicated transition times which were increasingly smaller

than those indicated by the probe mounted directly into the wall.

Shock-Wave Results

Figure 14 shows a schematic of the thermal boundary layer developed

over the flush hot-film anemometer. Note that the momentum boundary layer

is developed over a much larger length than the length of the hot-film and

is therefore much larger than the thermal boundary layer thickness. For

the expansion-wave the gas temperature is lower than the wall temperature

and the temperature at the edge of the thermal boundary layer developed

over the flush hot-film is slightly lower than the surrounding wall

temperature. For the shock-wave boundary layer flows, the gas temperature

is substantially higher than the wall temperature and the temperature at

the edge of the thermal boundary layer is larger than that of the

surrounding wall. For sufficiently strong shock waves the temperature

at the edge of the thermal boundary layer can be large enough so that'S_ _ _
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upon transition the hot-film anemometer output drops rather than rises.

For the weak shock wave experiments of Figs. 39-42, there is a

sudden increase in the hot-film anemometer output at the time of shock-

wave arrival followed by a second increase which is interpreted as

boundary layer transition. For the weakest shocks of Figs. 39-41 an

overheat ratio a = .2 (film temperature = 100°C) was used. The shock

wave of Fig. 41 is stronger than those of Figs. 39 and 40 so that the

sudden increase in anemometer output is difficult to detect. An increase

or decrease in the film overheat ratio would result in a more clear indi-

cation of transition. For the stronger shock of Fig. 42 an overheat ratio

a = .3 (film temperature = 1400 C) was used in order to observe a rise in

anemometer output at transition.

Expansion-wave and shock-wave boundary layer transition times and

their interpretations are discussed in Secs. 5.6 and 5.5 respectively.

5.3 Hot-Wire Results

In the present study, the hot-wire was used to confirm the transition

times for the expansion wave boundary layer interpreted from the flush

hot-film results. Figures 43-47 show simultaneous records of the response

of the hot-wire anemometer located at distances of .035 and .02 inches

from the wall, and the response of the flush hot-film anemometer at the

same X location on the opposite wall. As seen in Fig. 44, the hot-wire

response (labeled b) abruptly declines at about the same time that the

flush hot-film response (labeled c) abruptly increases. The sudden drop

in hot-wire anemometer output is interpreted as an indication of

transition. Agreement of interpreted transition times from the hot-wire

and the flush hot-film was considered to be very good, especially since
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the two probes are on opposite walls.

The sudden decline in hot-wire output is believed to be due to the

boundary layer suddenly becoming thicker at transition. The wire, which

is initially close to the edge of the laminar boundary layer, is suddenly

engulfed by a slower moving gas, and thus a drop in anemometer output

results. The use of the hot-wire for measuremen-.s in the boundary layer

is difficult since the boundary layer is typically less than .05 inches

in thickness and is changing in thickness from a zero initial value. The

physical properties also change across the boundary layer when compressi-

bility effects are significant.

5.4 Thin-Film Resistance Thermometer Results

Some experiments were performed in order to make a direct comparison

of expansion-wave transition times interpreted from the flush hot-film

anemometer and a thin-film resistance thermometer. The flush hot-film

probe was mounted directly in the cover plate of the modified test section

while the thin-film resistance thermometer plug v'as installed almost

directly opposite in the channel wall. Figures 50-52 show typical results.

Figure 51 shows a linear drop in film-voltage (labeled c) for about the

initial millisecond after wave heat arrival. This is followed by a slightly

steeper linear drop in film output for about three milliseconds and finally

a sharp decrease in slope and some fluctuations in the film output. This

last change in slope could be interpreted as being due to a natural

boundary layer transition but, in fact, is believed to be due to tripping

by the edge of the instrumentation plug. Note that the flush hot film on

the opposite wall indicated a transition time which is more than double

the 4.4 milliseconds indicated by the thin-film resistance thermometer.
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Figure 50 shows similar results to those of Fig. 51 except that at

the lower pressure of 45 psi the thin-film thermometer indicates a rise in

film temperature after twelve milliseconds which could be interpreted as

the end of the turbulent slug (Sec. 5.2). The rise in thin film thermometer

voltage output peaks and drops again at about th, same time that the flush

hot-film indicates transition. These records (Figs. 50-52) show how the

thin-film resistance thermometer output could be mis-interpreted to give

a transition time which is smaller than that which would occur for an

untripped boundary layer. It is possible that the small expansion-wave

boundary layer transition times observed by Chabai [1] using a thin film

resistance thermometer might have been due to botndary layer tripping.

Flush Constant-Current Anemometer Results

Operated cold and at a low constant current level the same probe used

as a flush hot film can be operated to measure the wall surface temperature.

For this purpose the constant-current anemometer was inserted in an

aluminum instrumentation plug which was inserted in the center of the

channel wall and at 4.6 feet from the diaphragm location. Most of the

flush hot-film data was obtained on the opposite wall at 4.7 feet from

the diaphragm location.

Figures 53-55 show the flush constant-current anemometer output

(labeled b) for the expansion-wave boundary layer. The current level

used in 3.35 milli-amps and the film voltage chan~e is amplified about

2300 times by the Disa SSDOl anemometer. The abrupt change in the slope

of the anemometer output (as in Fig. 53, 14 milliseconds after wave head

arrival), is interpreted as boundary layer transition. The indicated

transition times (Figs. 53-55) are in good agreement with transition times

indicated by the flush hot-film results on the opposite wall (Sec. 5.6).

.1 ... .. . . ... .. .... .. ..... .
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5.5 Transition Times for the Shock-Wave Boundary Layer

As previously mentioned, the purpose of the shock-wave boundary

layer experiments was to make comparisons with the extensive shock-wave

transition data reported by previous investigators [1,3,4,6]. A summary

of the shock-wave boundary layer transition times measured in the present

study for shock wave Mach numbers Ms of 1.17 to 1.81 are presented in

Table V. X is the particle path length based or the observed transitionP

time T and the inviscid flow velocity. Particle path lengths larger than

3.5 feet are beyond the joining of the special 4-foot section with the

contiguous section. For these particle paths, the possibility exists that

any step due to the joining could have tripped the boundary layer (example:

Ms = 1.79 and 1.81). Transition Reynolds numbers based on particle path

length at transition seem to correlate well with i value Rex = (4.0±1) x

106 . Also shown in Table V is the transition Reynolds number Re based
XTR

on distance XTR from the shock-wave front at which transition occurs.

Figure 56 shows the present shock-wave transition data (Re ) and that of
XTR

previous authors shown as a function of wall-to-free stream temperature

ratio (Tw/Te). The kinematic viscosity of the inviscid flow, ve =ie/pet

is used in all Reynolds number calculations. Notv that Re decreases

with increasing T w/Te (weaker shocks) which is opposite to the trend

suggested by Ostrachs stability calculations. It is worth noting from

the results of Table V that transition Reynolds numbers based on the

particle path length are better suited for the prediction of transition.

The curve of Ostrach and Thornton [7] shown in Fig. 56 is the

critical stability Reynolds number calculated by them from linear stability

theory for the compressible shock-wave induced boundary layer using the

approximate method of Lees [36]. The most striking feature here is that
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most of the experimental transition Reynolds numbers are very much less

than the critical Reynolds number Rex  calculated from linear stability
cr

theory. As pointed out by Ostrach and Thornton, this probably indicates

the presence of dominant effects or factors influencing transition other

than the internal Tollmien-Schlichting disturbances of the stability

analysis. The shock-wave data of the present st'idy agree fairly closely

with those of Thompson which generally lie the closest to the critical

stability curve. The present data actually slightly exceed the critical

stability Reynolds number for the weakest shock waves studied. The results

of the present shock-wave transition experiments were gratifying in that

they verified modifications made to the present apparatus (e.g., elimination

of very small surface discontinuities, as previoLsly described) and pro-

vided some confidence that the expansion-wave boundary-layer transition

experiments should be as free as reasonably possible from dominant gross

effects of surface discontinuities or irregularities. In this respect,

it might be noted that transition of the shock-wave induced boundary layer

is very sensitive to small surface discontinuities or isolated roughness

elements (Chabai [1]).

5.6 Transition Times for the Expansion-Wave Boundary Layer

For the expansion-wave boundary layer transition times were observed

at the center of the 5-inch wall as well as 1.75 inches off the center to

observe corner effects on transition times. As discussed in Secs. 5.3 and

5.4, most transition times indicated by other ins ruments agreed very well

with those times indicated by the flush hot-film results. Only transition

time data from the flush hot-film is therefore analyzed in this section.

For the flush hot-film probes at the center and corner, experimental

I W___
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transition times (after wave head arrival) are summarized in Table III.

Quantities expressed as a ratio indicate the presence of a turbulent

slug where the small time indicates the beginning of the slug and the

large time the final indication of transition. For low initial tube

pressure levels, where the turbulent slug was not observed, transition

times detected by both probes were in good agreement. The turbulent slug

phenomenon was only observed for the corner probe. The reason for this

is not known, but it might be pointed out that the 1.5 inch top wall was

rougher than the S-inch side wall.

The particle path length for most of the observed transition times

are less than the maximum of 3.5 feet of "clean" length necessary to

avoid tripping of the boundary layer by the joint with the contiguous

tube section. At 4.6 feet from the diaphragm location, observed center

probe transition times for initial pressures of 55 psia or less are almost

constant, possibly due to the particle path lengths being larger than 3.5

feet. For the 8.17 foot location from the diaphragm, center probe transition

times for initial pressure levels lower than 92 psia occur in the reflected

wave region where the gas is de-accelerated. Sowe of the observed transi-

tion times in the reflected wave region occur as much as 5 milliseconds

after the arrival of the reflected wave.

The flush hot film located at the center of the S-inch wall indicated

the longest transition times. As expected, the transition times increased

with distance from the diaphragm location and decreased with increasing

pressure. At the higher pressures, there appears to be an abrupt change

in the transition time with increasing pressure, possibly because of the

increasing importance of wall roughness. The transition times observed

are in general four times greater than those observed previously by
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Chabai [1].

As mentioned in Sec. 5.1, some of the observed expansion-wave transi-

tion times occurred under the influence of a non-centered expansion wave

or in a constant flow region. Table IV summarizes the values of the

centered (so) and non-centered (s) similarity parameters at which transi-

tion is indicated by the center-line flush hot film. Values of s smaller

than s indicate that non-centered wave effects are present, while values

of s substantially larger than s indicate that the observed transition
0

occurred in the constant flow region behind the wave. In the constant

flow region, the stabilizing favorable pressure gradient is no longer

present, and the boundary layer is under the destabilizing effect of the

wall heating (Tollmien [24]).

Figure 57 illustrates the present expansion-wave transition data in

terms of the local Reynolds number at transition, Re6, , based on the
TR

local displacement thickness 6* (tube fixed coordinates) versus the local

streamwise similarity coordinate s. The curve in Fig. 57 is the critical

stability Reynolds number, Re,* , calculated by the approximate method
cr

of Lees [36] as previously discussed. As in the case of the shock-wave

results (Sec. 5.4) the trend of the experimental data do not follow the

critical stability curve. However, the magnitude; of the experimental

transition Reynolds numbers are generally much closer to the theoretical

critical stability values than in the case of the shock-wave boundary

layer discussed in Sec. 5.5. The observed transition Reynolds number,

3 3Re6,* varies between 4.5 and 10 to 7.5 x 10 , and is either slightly
TR

above or below the predicted critical value. All Reynolds numbers are

evaluated using the kinematic viscosity ve of the inviscid flow.

Wil. . . .. . . . .
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6.0 SIMARY AND CONCLUSIONS

The chief interest of the present study has been the stability and

transition characteristics of the unsteady laminar wall boundary layer

developed within plane expansion waves travelling into gas at rest.

Such previous studies of wave induced boundary layers have mainly

concerned the case of the shock wave where the boundary layer is

inherently steady (in wave fixed coordinates) and the inviscid outer

flow is uniform or constant in space. In contra..t, the expansion wave

boundary layer is inherently unsteady, and the inviscid flow is

characterized by strong spatial gradients. This type of unsteady wave

induced flow is of interest in various unsteady flow devices and also

closely simulates the unsteady boundary layer development on an

accelerating plate.

The linear stability of the expansion wave Poundary layer has been

investigated theoretically from several viewpoints in the present work.

It has been shown that the stability behavior should be near quasi-

steady over an appreciable range of conditions. On this basis, two

approaches were used to evaluate the linear stability under the limiting

assumptions of quasi-parallel and quasi-steady flow. The first

approach used the approximate method of L. Lees to determine the

minimum critical Reynolds number for the compressible expansion-wave

boundary layer, with heat transfer, over a range of the streamwise

similarity coordinate S from 0 to 1. Because of the accelerating

pressure gradient, the critical Reynolds number is substantially greater

than for the classical Blasius boundary layer and decreases from a

maximum value at the wavehead (S = 0) as S increases.

The second approach used for the quasi-parallel, quasi-steadyi
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assumption was exact numerical solution of the Orr-Sommerfeld equation

governing the linear stability. This was done cnly for the limiting

case of S = 0 (i.e., at the wavehead) where incompressible flow approxi-

mations apply. The neutral stability curve was calculated, and the

minimum or critical Reynolds number so obtained agrees closely with

the value obtained by Lees' approximate method for S = 0.

For such unsteady boundary layer flows in which the stability

behavior is close to quasi-steady, a suitable perturbation of the

limiting quasi-steady, quasi-parallel model should provide a first

estimate of unsteadiness effects. Such a general perturbation method

was developed using the method of multiple scales in which slow

time and space coordinates were introduced to allow for both time and

space variations of the mean flow. In general, the effects of the mean

flow unsteadiness may be expected to be of the sime order as effects

due to spatial variations of the mean boundary layer flow, so that both

the time and space variations of the mean flow must be considered

together. Numerical application of the perturbation method is clearly a

very considerable task and was beyond the scope of the present study.

However, the first step of the application is the solution of the limiting

quasi-steady, quasi-parallel model, which was doie for the expansion wave-

head boundary layer as previously mentioned. The perturbation method is

applicable to any unsteady boundary layer whose linear stability behavior

is close to quasi-steady. In particular, the method is applicable when-

ever the mean flow itself is close to quasi-steady.

In the present experimental study, boundary-layer transition times

were measured for the laminar wall boundary layers induced by plane

shock waves as well as expansion waves travelling into air at rest.

. -~.A--- U-
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Three methods of detecting transition were used: a surface hot-film

anemometer, a surface thin-film resistance thermometer, and a hot wire

anemometer located in the boundary layer. Generally, the transition

times determined by these different methods were in close agreement.

However, the surface hot-film anemometer proved a particularly useful

and sensitive indicator of transition in the expansion wave flows. It

was shown that the hot film behavior was essentially quasi-steady and

thereby responsive to the local skin friction which undergoes a very large

and rapid increase on transition. The hot film revealed transition of the

expansion wave boundary layer to be readily produced by tripping due to

very small surface steps or proturbances, contrary to results reported by

previous investigators. This effect is believed to be responsible for the

turbulent slug phenomenon observed under some co'iditions. On the basis of

the hot film indication of such effects, the test section used was modified

to eliminate minute surface steps originally present.

Transition Reynolds numbers previously measured for shock wave

boundary layers generally fall well below the critical stability Reynolds

numbers predicted by linear stability theory. The present shock wave

transition data agree fairly well with Thompson' data which generally

lie closest to the critical stability curve. For the weakest shock waves

studied, the present data slightly exceed the stability prediction. The

relatively high transition Reynolds numbers observed in the present

shock wave experiment- were interpreted as indicating the test section

surface to be very smooth and free from significant r, ughness elements.

The transition times measured in the presen' expansion wave

experiments are some five to eight times larger than those reported

from an earlier st-i/ by Chabai who used surface thin-film resistance
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thermometers as the method of detection. As for the shock wave data,

the expansion wave transition Reynolds numbers do not follow the trend of the

theoretical critical stability curve. Likewise, most of the data lie below

the stability curve.

The relatively low transition Reynolds numbers of the expansion

wave boundary layer as compared to the critical stability Reynolds

numbers predicted by the linear stability theory would suggest, as in

the shock wave case, that transition was dominated by mechanisms or

disturbances not accounted for in the linear stability theory used.

One such disturbance present to some degree in all shock-tube type

experiments is that of tube wall vibrations. Another disturbance of

interest in this connection is that of secondary flows induced by the

rectangular tube cross-section. It would be of interest to investigate

such effects in future studies.

'I
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TABLE I

e = Jordinson Present
~~Re

V kWk rkr r r r

2600 .2973 .0947 .29734 .09465

1800 .3212 .1088 .32123 .10876

1000 .3512 .1306 .3512 .1306

520 .3012 .1193 .30122 .11927

764 .2011 .0697 .20111 .06967

964 .1746 .0568 .17457 .05681

1364 .1455 .0433 .i455 .04333

2164 .1289 .036 .1285 .0344

Test problem, comparing eigenvalues on the Blasius
neutral curve obtained by Jordinson [27] with those
of the presently used program (STABIL).
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TABLE II

U e6*Or06
Re -e k =k 1  P ~ r

47,520 .3186 .0260

43,200 .3234 .0350

38,880 .3320 .0436

34,560 .3428 .0544

30,240 .3588 .064

26,609 .3838 .07063

25,920 .3918 .0739

25,488 .4022 .0773

25,920 .4080 .0788

26,609 .4085 .0786

30,240 .4050 .0708

34,560 .3929 .0627

38,880 .3780 .0555

43,200 .3636 .0484

47,520 .3482 .0412

Neutral stability eigenvalues k rand w r

for the expansion wave boundary layer at

s 0.
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TABLE IV

-Xs=2.17 ft -Xs=4.5 ft -Xs=8.17 ft

(psia) o sd s d  d

45.0 .797 .66 .853 .721 .583 .773 .656 .695 .701

55.0 .774 .659 .857 .708 .570 770

65.0 .728 .654 .823 .646 .578 .735 .641 .627 .685

85.0 .634 .532 .749 .578 .557 .665 .588 .504 .627

90.0 ---- .586 .550 .623

92.0 ---- ---- .569 .530 .607

95.0 .542 .515 .580

105.0 .558 .651 .719 .514 .501 .604 .447 .448 .507

110.0 ---- .365 .364 .421

115.0 .587 .628 .715 .500 .498 .596 .390 .388 .442

125.0 .492 .559 .627 .497 .489 .593 .346 .354 .397

145.0 .481 .560 .641 .482 .469 .566 .332 .345 .380

Observed values of s, s and sd at transition
of expansion-wave boundary

X.t

T observed transition timeI

* 0EXPArIS;ON WAVEHEAD \, * I * td a .( so ) ts o  Ad
0

X. X * EXPANSION TUBE/ I.

Location of the origin of 1-t coordinate

system along the wave-head path for plane
non-centered waves.

A* _4
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TABLE V

Re Re
P Record Ms  T Us  P P XTR

mm Hg # m sec ft/sec ft/sec ft x 10-6  x 10-6

50 820 1.79 1.7 2026 1161 4.62 3.72 2.77

50 820 1.81 1.45 2026 1161 4.0 3.17 2.36

52 821 1.81 1.20 2049 1186 3.38 2.90 2.11

52 821 1.81 1.15 2049 1186 2.36 2.78 2.02

99 806 1.56 1.78 1766 870 3.03 3.29 3.43

99 805 1.43 2.2 1623 682 2.59 2.20 3.03

99 805 1.43 2.55 1623 682 3.00 2.53 3.49

125 809 1.49 2.52 1675 773 4.23 4.98 4.97

189 813 1.37 3.55 1551 604 3.5 4.55 7.14

189 813 1.37 3.40 1551 604 3.35 4.36 6.84

251 815 1.26 4.00 1426 438 2.53 2.91 6.55

251 816 1.31 4.25 1483 516 3.37 3.99 7.48

251 816 1.31 4.20 1483 516 3.30 3.94 7.39

377 818 1.17 8.05 1324 297 3.08 3.45 11.57

377 818 1.17 9.15 1324 297 3.50 3.92 13.15

377 819 1.18 8.35 1336 314 3.43 3.98 12.92

Results of Present Shock-Wave Boundary Layer Transition Experiments
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11.

Figure 5: Calculated Re8 cr s) for expansion-wave compressible boundary

layer (eq. 3.14).
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Figure 6: Calculated ccr and ker for expansion wave compressible

boundary layer (eq. 3.15).
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mo

Figure 1.2: Response of flush hot-film anemometer to a 1.0 volt square-
wave signal of apnroximate freouency 2k 1z, P = 14.6 psia.

0

a(film over heat ratio) = .2,

oscilloscope gain = .5 volt/cm,

sweep time = .1 m-sec/cm,

HF(anemometer high frequency setting) = 2,

Gain(anemometer gain setting) ; 7.

4
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Figure 13: Photograph of FHFA viewed from top and side.

ao U

-40.

TUBB,~j WALL L F1{FA

Figure 14: Instantaneofts velocity and thermal boundary-layers over wall
with FIIFA of length L and uniform temperature Tf.

MM......................
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A

- HOT WIREQ

WIRE SUPPORTS

Figure 15a. Schematic diagram of hot-wire configuration.
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Figure lSb: Photograph of hot-wire mounted in instrumentation plug.

Figure 16: Photograph of thin-film thermometer.

W-
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Figure 18: Oscilloscope record for expansion-
wave boundary-layer measurements.

P =45 psia, X5 = 2.17 ft. (a) 10 psi/cm, 2 msec/cm;
(g) FHFA at corner .5 volt/cm, 2 msec/cm, R 0 = 11.120,*1 a =.2; (c) FHFA at center .5 volt/cm, 2 msec/cm, R =
13.ISI, a =.2.

Figure 19: Oscilloscope record for expansion-
wave boundary-layer measurements.

P = 65 psia, X s = 2.17 ft. (a) 10 psi/cm, 1 msec/cm;
(g) FHFA at corner .5 volt/cm, 1 msec/cm, R = 11.12l,
a = .2; (c) FHFA at center S5 volt/cm, 1 ms~c/cm, R.
13.10, a =.2.
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a

IRW

C

Figure 20: Oscillcscope record for expansion-
wave 'L-ouyidary-layer measurements.

Pg; 85 psia, Xs = 2.17 ft. (a) 20 psi/cm, 1 msec/cm;
()FH-FA at corner .5 volt/cm, 1 msec/cm, R 0 = 11.12Q~,

a = .2; (c) FHFA at center .5 volt/cm, 1 msec/cm, R0
13.19, a =.2.

a

Figure 21. Oscilloscope record for expansion-
wave boundary-layer measurements.

P = 105 psia, X S 2.17 ft. (a) 20 psi/cm, 1 msec/cm;
(g) FHFA at Corner 1.0 volt/cm, 1 msec/cm, R = 11.12Gl,
a a .2; (c) FHFA at center 1.0 volt/cm, 1 ms~c/cm, R0
13.1nl, a = .2.
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Figure 22: oscilloscope record for expansion-
wave boundary-layer measurements.

P0 = 45psia, X =4.6ft. (a) 10 psi/cm,
2 msec/cm, (b) PHFA at corner .5 volt/cm, 2
msec/cm, R0 = 11.12n2, a = .5; (b) FIIFA at
center .5 volt/cm, 2 msec/cm, R0 1 3.111,

a

C

Figure 23: Oscilloscope record for expansion-
wave boundary-layer measurements.

P0 = 55 psia, X. = 4.6 ft. (a) 10 psi/cm, 2 msec/
cm; (b) FHFA at corner .5 volt/cm, 2 msec/cm, R=
11.12l, a = .5; (c) FHFA at center .5 volt/cm,
msec/cm, R0 = 13.10, a = .5.
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mksWNW
Figure 24: Oscilloscope record for expansion-

wave boundary-layer measurements.

P =65 psia , Xs = 4.6 ft. (a) 10 psi/cm, 2 msec/cm
(g) FHFA at corner .5 volt/cm, 2 msec/cm, R 0 = 11.12SI,
a S .; (b) FHFA at center .5 volt/cm, 2 msec/cm, R0
11.12D, a .

Figure 25: Oscilloscope record for expansion-
wave boundary-layer measurements.

P =85 psiaI Xs = 4.6 ft. (a) 10 psi/cm, 2 msec/cm;
()FHFA at corner 1.0 volt/cm, 20 msec/cm, R0 a 11.12Q,

a =.5; (c) FHFA at center 1.0 volt/cm, 2.0 ssec/cm,
=o 13.1nl, a a .5.
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C

Figure 26: Oscilloscope record for expansion-
wave boundary-layer measurements.

P = 115 psia, Xs 4.6 ft. (a) 20 psi/cm, 1 msec/cm;
(8) FHFA at corner 1.0 volt/cm, 1.0 msec/cm, R0=
11.12Q, a = .5; (c) FHFA at center 1.0 volt/cu, 1.0
msec/cm, R0  13.1Q, a S.5

C

Figure 27: Oscilloscope record for expansion-
wave boundary-layer measurements.

P = 125 psia, 'X = 4.6 ft. (a) 20 psi/cm, 1 msec/cm;
()FHFA at corner 1.0 volt/cm, 1 msec/cm, R 0 = 11.120l,

a = S5; (c) FHFA at center 1.0 volt/cm, 1 msec/cm, R0
3lfa=.5
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C

Figure 28: Oscillosco~pe record for expansion-
wave boundary-layer measurements.

P =45 psia, X S = 8.17 ft. (a) 10 psi/cm, 2 msec/cm;
(g) FHFA at corner .2 volt/cm, 2 msec/cm, R 0 = 11.129,
a =.2; (c) FHFA at center .2 volt/cm, 2 msec/cm, R0
13. W, a .2.

C

Figure 29: Oscilloscope record for expansion-
wave boundary-layer measurements.

P =95 psia," X5 - 8.17 ft. (a) psi/cm, 2 msec/cm;
()FHFA at corner .5 volt/cm, 2 msec/cm, R. = 11.12a,

a =.2; (c) FHFA at center .5 volt/cm, 2 *sec/cm,
R 13.1fl, a =.2.
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C

Figure 30: oscilloscope record for expansion-
wave boundary-layer measurements.

4 P =105 psia, X5 = 8.17 ft. (a) 20 psi/cm, 1 msec/cm;
()FHFA at corner .5 volt/cm, 1 msec/cm, R 0= 11.12P,

a =.2; (c) FHFA at center .5 volt/cm, 1 msec/cm, R0
13.192, a =.2.

Figure 31: Oscilloscope record for expansion-
wave boundary-layer measurements.

P =115 psia, Xs = 8.17 ft. (a) 20 psi/cm, 1 msec/cm;
(g) FHFA at corner .5 volt/cm, 1 msec/cm, R 0 = 11.12P,
a =.2; (c) FHFA at center .5 volt/cm, 1 msec/cm, R.

l.Sa =.2.
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Figure 32 oscilloscope record for expansion-
wave boundary-layer measurements.

P0 = 55 psia, X =5 ft. (a) 10 psi/cm, 2
msec/cm; (b) FI4 A at center .5 volt/cm, 2 msec/cm,

R= 15.4Q2, a .5.

I a

b

Figure 33 Oscilloscope record for expansion-
wave boundary-layer measurements.

P = 65 psia, X = 5 ft. (a) 10 psi/cm, 2

msec/ cm; (b) FHPA at corner .5 volt/cm, 2 msec/cm,

Ro = 15.492, a =.5.

Jil 01 1 1111
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b

Figure 34 oscilloscope record for expansion-
wave boundary-layer measurements.

P 0 = 85 psia, X = 5 ft. (a) 10 psi/cm, 2
msec/cm; (b) FHPIA at corner .5 volt/cm, 2 msec/cm,

=o 15.40, a .5.

T I*o-
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a

Figure 35 Oscilloscope record for expansion-
wave boundary-layer measurements.

P =45 psia, X = 4.6 ft. (a) 10 psi/cm, 2 msec/cm;
(g) FHFA channel center .5 volt/cm, 2 msec/cm, Ilo
15.4Q~, a = .5; (c) FHFA plate center .5 volt/cm,
2 msec/cn, R0  1 3.1Q, a =.5.

Mal

Figure 36 Oscilloscope record for expansion-
wave boundary-layer measurements.

P= 65 psia, X = 4.6 ft. (a) psi/cm, 2 msec/cm;
(8) FHFA channef center 1.0 volt/cm, 2 msec/cm, R0
15.4Q, a =.5; (c) FHFA plate center 1.0 volt/cm, 2
msec/cm, R 0  13.1Q, a =.5.

-. - -1. * I111
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ip.
Figure 37 Oscilloscope record for expansion-

wave boundary-layer measurements.

P = 85 psia, X = 4.6 ft. (a) 10 psi/cm, 2 msec/cm;
(B) FHFA channef center 1.0 volt/cm, 2 msec/cm, R =

15.4n, a = .5; (c) FHFA at plate center 1.0 volt/m,
2 msec/cm, R° = 13.10 , a = .5.

Figure 38: Oscilloscope record for expansion wave
boundary-layer measurements.

p = 115 psia, X5 = 4.6 ft. (a) 20 psi/cm, 1 msec/cm;
(B) FHFA channel center 1.0 volt/cm, 1 msec/cm, R =
15.4 , a = .5; (c) FHFA plate center 1.0 volt/cm,°

1 msec/cm, R° = 13.1l, a = .5.

771



shock-wave boundary layer measurements.

Figure 39 P 251 mm Hg, T0  26.4 0C, X5 = 7.5 ft. M5  1.33. =.2

(a) FHFA at corner .1 volt/cm, 1msec/cm, R 11.12P2,a .2
(b) FHFA at center .1 volt/cm, 1 msec/cm, R0  13.l1Q, a =.2.
(c) 4 psi/cm, 1 msec/cm, X = 10.58 ft. (d)04 psi/cm, 1 msec/cm,

=s7.63 ft.

shckwveb undr ae esrmnsFiue4 P0 37m H o=262C =75fUM .8
(aCHAa onr. otcIme/m 11Q 2

Figur 40 p s/m I 377/m mmHg = 10X .5 ft (d) 4 1.18. mecc

x= 7.63 ft.
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a
b
C

d

- shock-wave boundary layer measurements.

Figure 41 P 189 mm Hg, T0 = 26.30C, X5  7 75 ft, M5 = 1.40.if()FHAa cre 1 otcm e/m 0  11s~ 2
(b) FHFA at cener .1 volt/cm, 1 msec/cm, R' = 11.12, a =.2.

(c) 4 psi/cm, 1 msec/cm, X.= 10.58 ft. (d) 04 psi/cm, 1 msec/cm,

:1 =7.63.S

a s i

shock-wave boundary layer measurements.

Figure 42 P 0 99 mm Hg, T 0 = 23.40C, Xs = 7.S ft, M S = 1.43.

(a) FHFA at coner .1 volt/cm, .5 msec/cm, R = 131Q2, a =.3.

(c) 4 psi/cm, S5 msec/cm, XS = 10.58 ft. (d)04 psi/cm, .5 msec/cm,
x= 7.63 ft.
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Figure 43 oscilloscope record for expansion-
wave boundary-layer measurements.

P = 45 psia, Xs = 4.6 ft. (a) 10 psi/cm, 2 msec/cm;
()HIVA at y = .035 in, 5.0 volt/cm, 2 msec/cm, R 0

6.95a, a = .5; (c) FHFA at center .5 volt/cm, 2 msec/'4cm, =o 13.10I, a .5.

idi

=ra

C

Figure 44 oscilloscope record for expansion-
wave boundary-layer measurements.

P = 45 psia, X = 4.6 ft. (a) 10 psi/cm, 2 msec/cm;
()HWA at y = !022 in, 2.0 volt/cm, 2.0 msec/cm, R.

6.950, a = .5; (c) FHFA at center .5 volt/cm, 2.0 msec/
cm, R.= 13.1a, a =.5.
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a

wave boundary-layer measurements.

P = 65 psia, Xs = 4.6 ft. (a) 10 psi/cm, 2 msec/cm;
(g) HWA at y = .035 in, 5.0 volt/cm, 2 msec/cm, R_ =
6.950, a = .5; (c) FHFA at center .5 volt/cm, 2 msec/
cm, Ro = 13.1Q, a = .5.

a

b

Figure 46 Oscilloscope record for expansion-
wave boundary-layer measurements.

P = 85 psia, Xs = 4.6 ft. (a) 10 psi/cm, 2 msec/cm;
(9) HWA at y = .035 in, 5 volt/cm, 2 msec/cm, R =
6.959, a = .5; (c) FHFA at center 1.0 volt/cm, 2 msec/
cm, Ro = 13.10, a = .5.

* i _
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Figure 47 Oscilloscope record for expansion-
wave boundary-layer measurements.

P = 85 psia, Xs = 4.6 ft. (a) 10 psi/cm, 2 msec/cm;
(8) HWA at y = .022 in, 2.0 volt/cm, 2 msec/cm, R0 =
6.95al, a = .5; (c) FHFA at center 1.0 volt/cm, 2 msec/

cm, Ro = 13.19, a = .5.

C

Figure 48: Oscilloscope record for expansion-
wave boundary-layer measurements.

P = 85 psia, X 4.5 ft. (a) 20 psi/cm, 2 msec/cm;

(8) HWA at y = .s25 in, 5 volt/cm, 2 msec/cm, R0 = 3.93a,

a a .5; (c) FHFA at center .5 volt/cm, 2 msec/cm, Ro =
13.10, a = .5.

9IN
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fme

(1) Voltage output of surface thin film thermometer at 7

ft station. 2 mvolt/cm +, 1 msec/cm, + RF = 1336.1 r.
Initial film voltage (EF) = 8.016 volts, a = 6.423
x 10- 4 1*C.

(2) Wall pressure transducer output at 7 ft station.
10 psi/cm +, 1 msec/cm +.

(3) Wavehead arrival at 7 ft station.

(4) Beginning of boundary layer transition at 7 ft
station.

Figure 49: Typical oscilloscope record of thin film resistance
thermometer output and pressure transducer output. Dry
air with Po = 55 psia, To = 73.4 0F.

Ii
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%a n Will

Figure 50 Oscilloscope record for pxpansion-
wave boundary-layer measurements.

P = 45 psia, X5 = 4.6 ft. (a) 10 psi/cm, 2 msec/cm;
(8) FHFA plate center .5 volt/cm. 2 msec/cm, R 0
13.1Q~, a = .5; (c) thin film thermometer, channel wall,
Rf 624.4sl, Ef 4.995 volts, 2.0 MV/cm, 2.0 msec/
cm, a~ 8.72 x O-4/OC.
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b

Figure 1 p =65 psia, Xs =4.6 ft. (a) 10 psi/cm, 2 msec/cm;
(B) FHFA plate center .5 volt/cm, 2 insec/cm, R l3.lSI,

a=.5; (c) thin film thermometer, channel wal?, R f
622.4s, E f =4.99 volts, 2.0 MV/cm, 2.0 msec/cm,
a L 8.72 x lO.4/aC.

Figure 52 Oscilloscope record for expansion-
wave boundary-layer measurements.

P = 85 psia, X= 4.6 ft. (a) 20 psi/cm, 2 msec/cm;
(B) FHFA at plafe center 1.0 volt/cm, 2 msec/cm ' R0 =
13.1nl, a = .5; (c) thin film thermometer, channel wall,
R f =622.50, E -= 4.99 volts, 5.0 MV/cm, 2.0 msec/cm,
a =8.72 x 104/ *C.
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a

Figure 53. Expansion wave record. P0  45 psia, To= 23.5*C, x = 4.6 ft.

(a) Pressure 10 psi/cm, 2 msec/cm. (b) Flush constant current

anemometer, I = 3.35 milliamps, R F 1 5.349Z, amplification

- A =2300, .5 volts/cm, 2 msec/cm.

Figure 54 Expansion wave record. Po = 65 psia, To= 23.5 0C, x5  4.6 ft.

(a) Pressure 10 psi/cm, 2 msec/cm. (b) Flush constant current

anemometer, I = 3.35 milliamps, R F 1 5.34Q2, amplification

A =2300, .5 volts/cm, 2 msec/cm.
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a

Figure 55. Expansion wave record. P = 85 psia, To = 23.4 0C, x = 4.6 ft.
00

(a) Pressure 10 psi/cm, 2 msec/cm. (b) Flush constant current

anemometer, I = 3.35 milliamps, R - 15.341l, amplification

A = 2300, .5 volts/cm, 2 msec/cm.
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Po
KEY SUBSCRIPT psia

S 8.17 ft 1 454.IIf 2 ss
2.7 ft 3 6

4 85
5 105
6 115
7 125

'0- -

o Re,*
cr

go,0

A 2

,--s

5" 5

4 I I 

4 . S .6 .7
Figure 57: Comparison of observed transition Reynolds number from

present experiment and calculated critical Reynolds
number (Eq. 3.14) for the expansion-wave boundary-
layer.
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Figure 58 Cscilloscope record for expansion-wave boundary layer measure-

ments. Fluctuations in static pressure. Po = 125 psia.

(a) P at X = 6.75 ft, 20 psi/cm, 2 msec/cm, 10 KI~z upper
s

frequency filter; (b) P at X s = 9 ft; (c) P at A= 6.75 ft;

(d) P at 3 ft. No filter on b, c and d.

Figure 59 Oscilloscope record for expansion-wave boundary layur
measurements. (a) Accelerometer output 2 g/cm, 2 msec/cm;I1
(b) Pressure, 20 psi/cm, 2 msec/cm; (c) FFIFA R. = 16.2Q,

.5 volt/cm, 2.0 msec/cm, a = .5, 1Hf= 3, G = 6. t,*=7 At-

WO 'T... " ' " .. . iii l~ l
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Theory (eq. 5.2)

.4-(

00

.2~~: 0 C:.7 ft

(D PO= 45 psaia

S * PJ 65 Psia
Q0  90 psaia

.1 Za2.17 ft
o Pow 45 Paia

P*,Fik 65 peia

Figure 61 Comparison of experimental and theoretical s 'kin friction for
the expansion-wave boundary layer. L *.7L*.
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APPENDIX A

THE COMPUTER PROGRAM FOR SOLUTION OF THE

ORR-SOMMERFELD EQUATION

A.1 Program Description

A computer program was developed to solve for the eigenvalues of

the Orr-Sommerfeld equation for boundary layer flows. The program consisted

of a main program (STABIL) and eight subroutines written in Fortran IV.

The iterations to find the eigenvalues were performed by an optimization

routine developed by K. Afimiwala* [52].

Program STABIL

The main program STABIL initialized the inputs for the optimization

subroutine CONGRA which searched for the desired eigenvalues X(l) and X(2).

X(l) and X(2) were chosen as k and w or k and k. or any other desired
r r r 1

eigenvalues. Also required for the use of subroutine CONGRA were the

initial step size for the search (TT), the maximum step size for the

search (TMAX), the accuracy criteria (ACC), and the maximum number of

iterations (LIM) performed to satisfy the accuracy criteria.

The eigenvalues were found utilizing the orthonormalization** tech-

niques described in Sec. A.2 by setting SKIPY < 1 and YA = 0. Once the

eigenvalues were found STABIL set SKIPY = 2 (orthonormalization skipped)

and called function subroutine F(X) to evaluate the complex constant YA

*The optimization routines were provided by Dr. Roger W. Mayne and their
use is greatly appreciated.

**The use of these methods was the result of a conversation with Dr.

Stephen Davis whose help is much appreciated.
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0 = *1 + YA f2). Finally, STABIL called F(X) again (SKIPY = 2, YA 0 0)

and subroutine OUTP evaluated and printed the eigenfunctions (,,',,u")

without orthonormalizing. An attempt was also made to evaluate the eigen-

functions using the orthogonalization technique but the required subroutine

did not perform as desired. For the large Reynolds numbers (Re6, > 2,000)

the eigenfunctions must also be evaluated using orthonormalization.

Function F(X)

Function subroutine F(X) was used by the optimization package to

evaluate F(X) = *(n=O) which was a test of whether or not the boundary

conditions were satisfied at the wall. F(X) was also called by STABIL to

evaluate the constant YA and the eigenfunctions.

For eigenvalue evaluations F(X) was computed by integration of the

Orr-Sonmerfeld equation using the method of orthonormalization as described

in Sec. A.2. Orthonormalizations were performed NBLOCK+l times, once at

the start and at the end of each block. Each integration was performed

over a block size STP = NBLOCK The integration was performed in complex

variables and using a single precision predictor-corrector subroutine

CHPCG* in equal steps An = PRMT(4).

Subroutine NORMAL

Normalized the eigenvalue solution vectors so that Xl = 1

, (y(l),y(2),y(3),y(4)) became

Xl
XlN =

Ixli

*Modified version of double precision subroutine DHPCG. DHPCG was

obtained from Dr. Joseph C. Mollendorf and its use is greatly appreciated.

I.1_
, I . . .. . .. . ... . . .. . . . . . . . . . .
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and: X2 = j2 = (02902"92"1#2) = (y(S),y(6),y(7),y(8)) became

X2N = X2

Ix21

Subroutine INNER

This computes the inner product of the two complex vectors Xl and.

X2, (IXl1 = ALM).

Subroutine SCHMIDT

The Gram-Schmidt method was used to modify normalized solution vector

X2N so that it was orthogonal to the normalized solution vector XlN. The

modified vector X3 was derived as follows:

rXlN. X2N]
X3 = X2N -XlN.X2N XlN

so that

XlN.X3 = 0

At the end of each block X1 was set equal to XIN and X2 was set equal to X3.

Subroutine CHPCG

CHPCG performed the integration for each block from n = PRMT(l) to

PRMT(2) - (PRMT(l) - STP) in equal steps An = PRMT(3) = . CHPCG had

the capability of subdividing the initial step size PRMT(3) if the accuracy

criteria was not satisfied. To insure that this does not happen the

accuracy parameter PRMT(4) was set very large (> 10 20).

__ _ __ _

9 ,.______I__I__I______"__"
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Subroutine FCT

FCT was called by CHPCG to evaluate the first order differential

equations for the Orr-Sommerfeld equation and the mean flow if required.

For the expansion-wave boundary layer, the mean flow solution was already

known (Eq. 2.19).

Subroutine OUTP

OUTP is an output subroutine which printed and evaluated the eigen-

functions if SKIPY > 1.5 and YA j 0.

A.2 Operation of Integration Function Subroutine (F(X))

F(X) integrated the Orr-Sommerfeld equation from nmax to the wall for

a given Reynolds number and eigenvalues. For neutral stability calcula-

tions, eigenvalues ki and wi were set to zero, and k' and .r' were setRe6R

to X(1)/n 6 and X(2)/i 6 respectively. Re is also modified to Re' = N

where n6 is the value of n at y = 6R ' For the Blasius boundary layer,

6R is taken as the displacement thickness so that n6R = 1.7208. For the

expansion wave 6R is taken as the momentum thickness and n6 = .3479.

The length used to yield the non-dimensionalized quantities k ', wr' and
rr

Re' became y at n = I which was used because the mean flow velocity profile

U was derived in terms of the similarity parameter n (U = U(n)). The

momentum thickness a for the expansion wave boundary layer was obtained

from a numerical integration of the velocity profiles Eq. (2.19) given by

Srinivasan [5]. A trapezoidal rule method of integration was used for

600 even steps from n = 0 to n = 6.

Integration was started at a sufficiently large y. (or n) such that
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the inviscid form of the Orr-Sommerfeld equation applies and there was

no change in the resulting eigenvalues. Typically integration was started

at y such that !-- > .999 for the expansion wave boundary layer flow. This

corresponds to n _ 4.0. Integration was started at "max = 6.0 so that

U d2 U •
1.0000 and --. 00005. The asymptotic solution to the Orr-

Sommerfeld equation was then given by

-k'
% ax

and

e-k Z+Re (k' -w') r max
2= e

For the expansion wave boundary layer, 02 was found to be so small

(< e- 3 0 0) that truncation error would occur from any mathematical opera-

tion where 02 is multiplied by itself or one of its derivatives (e.g.,

2
02 = 0). To avoid this, *2 was multiplied by a constant greater than

200
e

Prior to integration the solution vectors Xl = (0l,0lt,0I,i")

and X2 = (02,902,02"102"') were normalized (each vector becomes of unit

length) and a precautionary correction made to X2 to insure it was

orthogonal to Xl as described in Sec. A.l. The integration was then

performed by subroutine CHPCG in even steps Ah = PRMT(3). The truncation

error in CHPCG was proportional to Ah$ . A choice of a too large Ah

would result in a rapid deterioration of the linear independence of the two

solution vectors beyond the restoration capability of the orthogonaliza-

tion scheme. A choice of too small a Ah would increase the number of

mathematical operations and enhance error propagation. Ah was chosen as

1/2 n as recomuended by Betchov and Crimminale [26] because the computer
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performs the computations in a binary mode and this choice of step size

would cut down on the resulting truncation error. The choice of n is

dependent on the product k'Re' (Ref. 53). For Ree = 12,000 a choice of

n = 6 was found to yield fourth place accuracy of eigenvalues as compared

to n = 7 (with NBLOCK+l = 25 orthonormalizations as discussed below).

7For Re0 > 14,000 a step size of 1/2 was used fer eigenvalue computations.

Due to computer truncation error, the solution vectors do not remain

linearly independent and their inner product deviated from zero. The

integration was stopped at the end of equal distances STP * and
NBLOCK

the solution vectors were orthonormalized. Some investigators (e.g.,

Ref. 53) stop the integration after each step or a number of steps and

check on the orthogonality of the two solution vectors. If the angle

between the two vectors is not within a desired range, then an orthonor-

malization is performed. A check on orthogonality at the end of each step

would be more time consuming. If a sufficient number of orthonormalizations

are chosen, then the same results can sometimes be obtained using less

computer time. The use of too many unnecessary orthonormalizations could

also produce some computational errors as suggested by Davey [39].

The choice of an appropriate step size depends on the number of

orthonormalizations used. A larger step size might be used with a smaller

number of orthogonalizations. There is a minimum number of orthonormali-

zations, however, that should be used with each choice of Ah and Re The

choice of NBLOCK was somewhat arbitrarily chosen as 24 since at the

largest Reynolds number for the Blasius boundary layer NBLOCK = 6 gave

good accuracy. Using this choice of NBLOCK, Ah was varied to give the

desired fourth place accuracy for the eigenvalues. Following the final

choice of Ah, NBLOCK was increased to 30 but this did not result in a

'I _ _ __ _ _ _
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change of the fourth place decimal accuracy.

The evaluation of eigenfunctions using orthonormalizations required

a transfer matrix to keep track of the changes made each time an ortho-

normalization was used. An attempt was made to write a subroutine for

this purpose but was not successful. An evaluation was made of the eigen-

functions without orthonormalizing for the Blasius boundary layer with

Re6, = 998, k = .3086 = i .0057 and w = .112, and integrating from

Tmax
3.4 rather than 6 (used by Jordinson [27]). For fr the agreement

was good with Jordinson's results. However, << fr so that the relative

error for was much more significant, especially for large distances

from the wall (n/6* > 1.2). For larger Reynolds numbers, the orthogonali-

zation scheme becomes increasingly important for accurate eigenvalue and

eigenfunction evaluations [39].

The computation time for the eigenfunction evaluation and each

iteration was typically about 2 seconds. The total number of iterations

required to find the eigenvalues depends on the initial guess. To obtain

good initial gueses, a matrix search was performed for the smallest F(X)

in equal increments of k and w and the best guess(es) were tried in the

optimization routine. The correct eigenvalues were those giving the

smallest value of F(X) = * at the wall. The final search for the eigen-

value involved as many as fifty iterations and took approximately 100

to 150 seconds. This, however, did not include the time consumed for

the numerous other starting gueses. The actual total time involved in

finding one point on the neutral stability curve of the expansion wave

boundary layer was about 500-1000 seconds. The large computation time

needed was due to the lack of previously published eigenvalue results

for this type of flow that could be used as a starting point of the

search.
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APPENDIX B

INTERPRETATION OF THE FLUSH HOT-FILM ANEMOMETER OUTPUT

FOR THE EXPANSION WAVE BOUNDARY LAYER

The application of a small heated surface film to measure local skin

friction has been successfully demonstrated by a number of workers

(e.g., Refs. 41 and 49) for steady boundary layer flows. In the present

application to the expansion-wave boundary layer the flow is unsteady.

However, because of the small physical size of the film its response

tends to be quasi-steady and therefore still indicative, at least quali-

tatively, of the local instantaneous skin friction. Before discussing the

expansion wave application further, it is appropriate to first summarize

briefly the theory of the hot surface film for steady flows.

Consider a small heated surface film of length L* in the flow or x

direction and width W perpendicular to the flow direction, where L* << W.

The film is assumed to be mounted on a substrate of low thermal conductivity

so that the surface temperature decreases very steeply along x on either

side of the film from the maximum film temperature to a constant wall

temperature. For simplicity of analysis, the usual theory replaces this

actual distribution of surface temperature by a "top-hat" or square-wave

distribution along x over an effective film length L which may be

determined by calibration. The Disa hot film used in the present studies

is mounted on quartz and has dimensions L* = 0.2 mm, W = 1 a.

When the hot film is immersed in a laminar velocity boundary layer

which is cooler, heat transfer to the fluid is assumed to occur through

a thin thermal boundary layer which can be considered to begin at the

leading edge of the top-hat surface temperature distribution. It is

assumed that the thickness of this thermal boundary layer is much smaller
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than the thickness of the velocity boundary layer, and also small compared

to the effective film length (in order that boundary layer theory applies).

Then the velocity distribution in the region of the thermal boundary layer

may be approximated by

w Y+I dk 2(B1id-y - (B-i)
2P dx

where T w is the local wall shear stress and u the molecular viscosity.

An integral formation may now be developed using Eq. (B-l) and the

following integral energy equation for the thermal boundary layer

df U(T-Tl)dY = 1 qw( x )  
(B-2)

where viscous dissipation is neglected. In Eq. (B-2) T1 is the temperature

outside the thermal boundary layer and qw = -k(dT/dy) w is the local

rate of surface heat transfer to the fluid. If some reasonable assumption

is now made for the temperature distribution T-T1 as a function of y/STO

where 6T = 6T(X) is the thickness of the thermal boundary layer, then

Eqs. (B-i) and (B-2) may be combined to obtain an expression for Tw as

a function of the heat transferred to the fluid. In Ref. 49 this is

done assuming a universal shape for the temperature profile (independent

of dp/dx) as given by Curle [43]. The resulting expression for Tw is

ff a2  ( bLdp (B-3)

pw 2ka kAT -2-adx

with the notation:

a,b = constants of the temperature profile; Curle [43] gives a =

.2226, b = .1046 based on similarity solutions of the

e differential equations

L = effective length of the film assuming a top-hat film temperature

j A ____ ____ ____ ____ ___.___
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distribution with x

= OwL = rate of heat transferred to the fluid per unit width

of the film

a = Prandtl number of the fluid

AT T Tw-T1 = overall temperature change across the film thermal

boundary layer. AT = 0 upsteam of the effective leading

edge of the film and AT = constant over the effective length

L of the film.

In numerous applications the term involving dp/dx in Eq. (B-3) is much

smaller than the other two terms and can be neglected for a convenient

1/3first approximation. In that case Qw is proportional to Tw

If the film has electrical resistance RF and is heated by an electric

current i, then the steady state energy balance is expressed by

i2RF = WQw + QB (B-4)

where WQw is the total rate of convective heat loss from the film to

the fluid and QB is the rate of heat loss to the substrate on which the

film is mounted. Combining Eqs. (B-3) and (B-4) and neglecting the dp/dx

term gives

2
i2RF 1/3 + B (B-5)

where

A- aL2 1/3
A kW( poa 

I/

1A
and

QI

In general, A and B depend on AT. By calibration in a steady flow of
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known skin friction, a basic calibration curve of R/AT versus T 1/3

can be constructed for constant AT. The constants A and B of Eq. (B-5)

are thus effectively determined. An unknown skin friction can then be

determined from measured values of i and RF. Additional refinements of

the technique, including application to turbulent boundary layers, are

discussed in Refs. 41 and 49.

In the present application to the unsteady expansion-wave boundary

layer the film was used with a Disa 55DO1 anemometer unit which maintained

the film resistance or temperature constant by appropriate current varia-

tion. If the variations of L and AT with time are neglected, with T 1

T0 assumed, then the foregoing steady state relations may be expected to

apply qualitatively if the response of the film thermal boundary layer

is near quasi-steady. The latter will be true if the diffusion time of

the film thermal boundary layer, which is 6T 2/ = 6T 2/V (for air), is

much smaller than the time characterizing change of the local velocity

profile, which may be taken as u/(Bu/3T) for y - 0 where T is the time

after wavehead arrival.

Neglecting ap/3x, the leading term for u as y -+ 0 is given by

(from Sec. 2 results)

T1/2ur2f ( ) y_ (B-6)u 0-2ao-- T+t
0 s

where ts is the time for the expansion wavehead to reach the film loca-

tion. The characteristic time for change of the velocity profile is

then

2T (T+ts
u/(au/aT) =r -et 5ts-T

To obtain an estimate of 6T at the trailing edge of the film (after
|T

'- , II I I I -r
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distance L along x) the convection and diffusion times may be equated
on the assumption of near quasi-steady behavior, i.e., L/u = 6T2/V

v 0L 1/3

This gives 6T (--Y) as the thermal layer thickness developed over

the length L, where u/y depends on T as given by Eq. (B-6). From these

relations, the condition 62/Vo << U/(DU/aT) characterizing near quasi-

steady behavior then becomes

(l+T/t )l/L 3/2 s2
L << 25/ ((TtsI T 2
t3/2 ts

o s (1-T/t

For the present values of L = L, a0, and ts, this condition is satisfied

quite rapidly, for /ts > .05 say, as T increases from the initial value

of zero. For L* = 0.2 mm, a = 1000 ft/sec, and ts = 5 x 10- sec,

L/(a0 ts) is about 10
- . Thus in the present expansion wave experiments

the hot film response was near quasi-steady except at the very earliest

* times after the wavehead arrival.

On the basis of a quasi-steady response, Eq. (B-5) was applied to hot-

film records over a range of conditions of the expansion-wave boundary

layer. The heat loss term QB was measured under no flow conditions where

the free convection loss was negligible by comparison. Assuming the

same heat loss QB to apply under flow conditions (for a fixed film

temperature), Eq. (B-S) was applied to determine T w from the measured film

voltage (iRF) versus time records. Comparison of Tw so determined with

the theoretical prediction from the boundary layer theory of Sec. 2

showed qualitative agreement for an effective film length L of 0.7L*.

This comparison is summarized in Fig. 61. The value of L/L* observed in

the present experiments is less than that typically observed in steady

state experiments (e.g., L/L* = 1.4 in Ref. 41). This is probably due

in part to the inherent unsteadiness of the present flow. Although the

.eL i i r'



B-6

film temperature itself is maintained constant, the distribution of

surface temperature adjacent to the film will become narrower with

increasing time.
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